These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38949726)
1. Biocontrol potential of plant growth-promoting rhizobacteria against plant disease and insect pest. Jian Q; Zhang T; Wang Y; Guan L; Li L; Wu L; Chen S; He Y; Huang H; Tian S; Tang H; Lu L Antonie Van Leeuwenhoek; 2024 Jul; 117(1):92. PubMed ID: 38949726 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Botanicals for Management of Piercing-Sucking Pests and the Effect on Beneficial Arthropod Populations in Tea Trees Camellia sinensis (L.) O. Kuntze (Theaceae). Tian Y; Chen Z; Huang X; Zhang L; Zhang Z J Insect Sci; 2020 Nov; 20(6):. PubMed ID: 33211857 [TBL] [Abstract][Full Text] [Related]
3. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Zhang T; Jian Q; Yao X; Guan L; Li L; Liu F; Zhang C; Li D; Tang H; Lu L Heliyon; 2024 May; 10(10):e31553. PubMed ID: 38818163 [TBL] [Abstract][Full Text] [Related]
4. Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot. Mishra AK; Morang P; Deka M; Nishanth Kumar S; Dileep Kumar BS Appl Biochem Biotechnol; 2014 Sep; 174(2):506-21. PubMed ID: 25082766 [TBL] [Abstract][Full Text] [Related]
5. Ecologically controlling insect and mite pests of tea plants with microbial pesticides: a review. Idris AL; Fan X; Muhammad MH; Guo Y; Guan X; Huang T Arch Microbiol; 2020 Aug; 202(6):1275-1284. PubMed ID: 32185410 [TBL] [Abstract][Full Text] [Related]
6. The role of insect intestinal microbes in controlling of Empoasca onukii Matsuda (Hemiptera: Cicadellidae) pest infestations in the production of tea garden: a review. Zhao Y; Song Q; Song Y Arch Microbiol; 2023 Jun; 205(7):267. PubMed ID: 37351731 [TBL] [Abstract][Full Text] [Related]
7. Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Liu K; McInroy JA; Hu CH; Kloepper JW Plant Dis; 2018 Jan; 102(1):67-72. PubMed ID: 30673446 [TBL] [Abstract][Full Text] [Related]
8. Primary screening and application of repellent plant volatiles to control tea leafhopper, Empoasca onukii Matsuda. Cai X; Luo Z; Meng Z; Liu Y; Chu B; Bian L; Li Z; Xin Z; Chen Z Pest Manag Sci; 2020 Apr; 76(4):1304-1312. PubMed ID: 31595641 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. Dutta J; Thakur D PLoS One; 2017; 12(8):e0182302. PubMed ID: 28771547 [TBL] [Abstract][Full Text] [Related]
10. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Mei X; Liu X; Zhou Y; Wang X; Zeng L; Fu X; Li J; Tang J; Dong F; Yang Z Food Chem; 2017 Dec; 237():356-363. PubMed ID: 28764007 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Plant-Growth-Promoting Rhizobacteria for Tea Plant ( Wang M; Sun H; Dai H; Xu Z Plants (Basel); 2024 Sep; 13(18):. PubMed ID: 39339634 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Terpene Synthase from Tea Green Leafhopper Being Involved in Formation of Geraniol in Tea ( Zhou Y; Liu X; Yang Z Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31801241 [TBL] [Abstract][Full Text] [Related]
13. The Relative Preference of Empoasca onukii (Hemiptera: Cicadellidae) for Oviposition on Twenty-Four Tea Cultivars. Yao Q; Wang M; Chen Z J Econ Entomol; 2022 Oct; 115(5):1521-1530. PubMed ID: 36029237 [TBL] [Abstract][Full Text] [Related]
14. A Disease Resistance Elicitor Laminarin Enhances Tea Defense against a Piercing Herbivore Empoasca (Matsumurasca) onukii Matsuda. Xin Z; Cai X; Chen S; Luo Z; Bian L; Li Z; Ge L; Chen Z Sci Rep; 2019 Jan; 9(1):814. PubMed ID: 30692583 [TBL] [Abstract][Full Text] [Related]
15. Exploring the dynamics of ISR signaling in maize upon seed priming with plant growth promoting actinobacteria isolated from tea rhizosphere of Darjeeling. Mondal S; Acharya U; Mukherjee T; Bhattacharya D; Ghosh A; Ghosh A Arch Microbiol; 2024 May; 206(6):282. PubMed ID: 38806859 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Jin S; Ren Q; Lian L; Cai X; Bian L; Luo Z; Li Z; Ye N; Wei R; He W; Liu W; Chen Z Planta; 2020 Jun; 252(1):10. PubMed ID: 32601995 [TBL] [Abstract][Full Text] [Related]
17. Potentiality of actinobacteria to combat against biotic and abiotic stresses in tea [Camellia sinensis (L) O. Kuntze]. Borah A; Hazarika SN; Thakur D J Appl Microbiol; 2022 Oct; 133(4):2314-2330. PubMed ID: 35880359 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Fan D; Smith DL Microbiol Spectr; 2021 Sep; 9(1):e0027921. PubMed ID: 34190589 [TBL] [Abstract][Full Text] [Related]
19. The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation. Chen LL; Yuan P; Pozsgai G; Chen P; Zhu H; You MS Pest Manag Sci; 2019 Dec; 75(12):3371-3380. PubMed ID: 31095875 [TBL] [Abstract][Full Text] [Related]
20. Advances in understanding the mechanism of resistance to anthracnose and induced defence response in tea plants. Jeyaraj A; Elango T; Chen X; Zhuang J; Wang Y; Li X Mol Plant Pathol; 2023 Oct; 24(10):1330-1346. PubMed ID: 37522519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]