These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38950034)
41. Fractal-fractional and stochastic analysis of norovirus transmission epidemic model with vaccination effects. Cui T; Liu P; Din A Sci Rep; 2021 Dec; 11(1):24360. PubMed ID: 34934111 [TBL] [Abstract][Full Text] [Related]
42. A non-singular fractional-order logistic growth model with multi-scaling effects to analyze and forecast population growth in Bangladesh. Ullah MS; Kabir KMA; Khan MAH Sci Rep; 2023 Nov; 13(1):20118. PubMed ID: 37978323 [TBL] [Abstract][Full Text] [Related]
43. Stability analysis of fractional order model on corona transmission dynamics. Hincal E; Alsaadi SH Chaos Solitons Fractals; 2021 Feb; 143():110628. PubMed ID: 33519120 [TBL] [Abstract][Full Text] [Related]
44. A vigorous study of fractional order COVID-19 model via ABC derivatives. Li XP; Bayatti HA; Din A; Zeb A Results Phys; 2021 Oct; 29():104737. PubMed ID: 34485028 [TBL] [Abstract][Full Text] [Related]
45. Modeling and analysis for the transmission dynamics of cotton leaf curl virus using fractional order derivatives. Fantaye AK; Birhanu ZK Heliyon; 2023 Jun; 9(6):e16877. PubMed ID: 37332962 [TBL] [Abstract][Full Text] [Related]
46. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Abdo MS; Shah K; Wahash HA; Panchal SK Chaos Solitons Fractals; 2020 Jun; 135():109867. PubMed ID: 32390692 [TBL] [Abstract][Full Text] [Related]
47. On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease. Din A; Shah K; Seadawy A; Alrabaiah H; Baleanu D Results Phys; 2020 Dec; 19():103510. PubMed ID: 33520616 [TBL] [Abstract][Full Text] [Related]
48. Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function. Khan A; Zarin R; Humphries UW; Akgül A; Saeed A; Gul T Adv Differ Equ; 2021; 2021(1):387. PubMed ID: 34426736 [TBL] [Abstract][Full Text] [Related]
49. Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel. Zafar ZUA; Sene N; Rezazadeh H; Esfandian N Math Sci (Karaj); 2022; 16(2):121-131. PubMed ID: 35673627 [TBL] [Abstract][Full Text] [Related]
50. On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order. Benkerrouche A; Souid MS; Stamov G; Stamova I Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885108 [TBL] [Abstract][Full Text] [Related]
51. [Formula: see text] model for analyzing [Formula: see text]-19 pandemic process via [Formula: see text]-Caputo fractional derivative and numerical simulation. Mohammadaliee B; Roomi V; Samei ME Sci Rep; 2024 Jan; 14(1):723. PubMed ID: 38184696 [TBL] [Abstract][Full Text] [Related]
52. Insights into time fractional dynamics in the Belousov-Zhabotinsky system through singular and non-singular kernels. Alsallami SAM; Maneea M; Khalil EM; Abdel-Khalek S; Ali KK Sci Rep; 2023 Dec; 13(1):22347. PubMed ID: 38102173 [TBL] [Abstract][Full Text] [Related]
53. Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel. Akyildiz FT; Alshammari FS Adv Differ Equ; 2021; 2021(1):319. PubMed ID: 34249124 [TBL] [Abstract][Full Text] [Related]
54. A nonlinear fractional epidemic model for the Marburg virus transmission with public health education. Addai E; Adeniji A; Ngungu M; Tawiah GK; Marinda E; Asamoah JKK; Khan MA Sci Rep; 2023 Nov; 13(1):19292. PubMed ID: 37935815 [TBL] [Abstract][Full Text] [Related]
55. Modeling and numerical analysis of fractional order hepatitis B virus model with harmonic mean type incidence rate. Zarin R Comput Methods Biomech Biomed Engin; 2023 Sep; 26(9):1018-1033. PubMed ID: 35876274 [TBL] [Abstract][Full Text] [Related]
57. Generalized Ulam-Hyers-Rassias stability and novel sustainable techniques for dynamical analysis of global warming impact on ecosystem. Farman M; Shehzad A; Nisar KS; Hincal E; Akgul A; Hassan AM Sci Rep; 2023 Dec; 13(1):22441. PubMed ID: 38105260 [TBL] [Abstract][Full Text] [Related]
58. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Li G; Zhang Y; Guan Y; Li W Math Biosci Eng; 2023 Feb; 20(4):7020-7041. PubMed ID: 37161139 [TBL] [Abstract][Full Text] [Related]
59. Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Yan D Math Biosci Eng; 2023 Jan; 20(3):4437-4454. PubMed ID: 36896507 [TBL] [Abstract][Full Text] [Related]
60. Modeling and analysis of monkeypox disease using fractional derivatives. Okyere S; Ackora-Prah J Results Eng; 2023 Mar; 17():100786. PubMed ID: 36467285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]