These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38950168)

  • 21. Se(IV) oxidation by ferrate(VI) and subsequent in-situ removal of selenium species with the reduction products of ferrate(VI): performance and mechanism.
    Xu L; Fu F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):528-536. PubMed ID: 31903843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products.
    Karlesa A; De Vera GA; Dodd MC; Park J; Espino MP; Lee Y
    Environ Sci Technol; 2014 Sep; 48(17):10380-9. PubMed ID: 25073066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peracetic Acid Enhances Micropollutant Degradation by Ferrate(VI) through Promotion of Electron Transfer Efficiency.
    Wang J; Kim J; Ashley DC; Sharma VK; Huang CH
    Environ Sci Technol; 2022 Aug; 56(16):11683-11693. PubMed ID: 35880779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions.
    Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R
    Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient removal of phosphonates by ferrate-induced oxidation coupled with in situ coagulation.
    Fan WY; Zhang X; Guo PC; Sheng GP
    J Hazard Mater; 2023 Jun; 451():131104. PubMed ID: 36870127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of mixing in potassium ferrate(VI) consumption kinetics and disinfection of bypass wastewater.
    Elnakar H; Buchanan I
    J Environ Manage; 2019 Feb; 231():515-523. PubMed ID: 30388649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation of benzothiophene, dibenzothiophene, and methyl-dibenzothiophene by ferrate(VI).
    Al-Abduly A; Sharma VK
    J Hazard Mater; 2014 Aug; 279():296-301. PubMed ID: 25072136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals.
    Wu S; Liu H; Lin Y; Yang C; Lou W; Sun J; Du C; Zhang D; Nie L; Yin K; Zhong Y
    Chemosphere; 2020 Apr; 244():125490. PubMed ID: 31812060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system.
    Winkelmann K; Sharma VK; Lin Y; Shreve KA; Winkelmann C; Hoisington LJ; Yngard RA
    Chemosphere; 2008 Aug; 72(11):1694-9. PubMed ID: 18561980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of chloramphenicol by potassium ferrate (VI) oxidation: kinetics and products.
    Zhou JH; Chen KB; Hong QK; Zeng FC; Wang HY
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10166-10171. PubMed ID: 28258432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferrate (Fe(VI)) application for Municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal.
    Lee Y; Zimmermann SG; Kieu AT; Von Gunten U
    Environ Sci Technol; 2009 May; 43(10):3831-8. PubMed ID: 19544895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferrate(VI): a novel oxidant for degradation of cationic surfactant - cetylpyridinium bromide.
    Yang W; Lin X; Wang H; Yang W
    Water Sci Technol; 2013; 67(10):2184-9. PubMed ID: 23676386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of tetrabromobisphenol A by a ferrate(vi)-ozone combination process: advantages, optimization, and mechanistic analysis.
    Han Q; Dong W; Wang H; Ma H; Gu Y; Tian Y
    RSC Adv; 2019 Dec; 9(71):41783-41793. PubMed ID: 35541608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review.
    Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):645-67. PubMed ID: 20390913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway.
    Islam A; Jeon D; Ra J; Shin J; Kim TY; Lee Y
    Water Res; 2018 Sep; 141():268-278. PubMed ID: 29800835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.
    Zheng L; Deng Y
    Water Res; 2016 Apr; 93():172-178. PubMed ID: 26900976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of sulfapyridine by ferrate(VI): efficiency, influencing factors and oxidation pathway.
    Deng J; Wu H; Wang S; Liu Y; Wang H
    Environ Technol; 2019 May; 40(12):1585-1591. PubMed ID: 29319425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of triclosan].
    Yang B; Ying GG; Zhao JL
    Huan Jing Ke Xue; 2011 Sep; 32(9):2543-8. PubMed ID: 22165218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of bromate during ferrate(VI) oxidation of bromide in water.
    Huang X; Deng Y; Liu S; Song Y; Li N; Zhou J
    Chemosphere; 2016 Jul; 155():528-533. PubMed ID: 27153235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study.
    Rush JD; Cyr JE; Zhao Z; Bielski BH
    Free Radic Res; 1995 Apr; 22(4):349-60. PubMed ID: 7633565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.