These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38950217)

  • 1. Photonic generation of dual-band triangular chirps utilizing a monolithic integrated mutual injection laser and application in radars.
    Chen S; Li J; Zheng J; Wang L; Wu G; Zhang Y; Chen X; Pu T
    Opt Lett; 2024 Jul; 49(13):3592-3595. PubMed ID: 38950217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz.
    Wang S; Zhang L; Lu Z; Zhang H; Qiao M; Idrees N; Saqlain M; Zheng S; Jin X; Zhang X; Yu X
    Opt Express; 2021 Jun; 29(13):19240-19246. PubMed ID: 34266037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic-assisted multi-format dual-band microwave signal generator without background noise.
    Fan X; Jin Y; Cao X; Chen Y; Wang X; Li M; Zhu N; Li W
    Opt Express; 2023 May; 31(11):18346-18355. PubMed ID: 37381547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading.
    Fan X; Zhu S; Du J; Li M; Zhu NH; Li W
    Opt Lett; 2021 Feb; 46(4):868-871. PubMed ID: 33577534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic generation of dual-mode multi-format chirp microwave signals.
    Huang C; Chi H; Yang S; Yang B; Zhai Y; Ou J
    Appl Opt; 2023 Nov; 62(31):8224-8228. PubMed ID: 38037923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-linear chirp microwave signal generation by using single-beam injection to a DFB semiconductor laser and optical heterodyne technique.
    Jin Y; Lin X; Wu Z; Yue D; Zhang F; Zhang L; Jiang Z; Xia G
    Opt Express; 2022 Jun; 30(12):21698-21709. PubMed ID: 36224883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser.
    Zhou P; Chen H; Li N; Zhang R; Pan S
    Opt Lett; 2020 Mar; 45(6):1342-1345. PubMed ID: 32163961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic generation and transmission for an X-band dual-chirp waveform with frequency multiplication and power-fading compensation.
    Gao Y; Huang C; He H; Yang S; Yang B; Chi H
    Appl Opt; 2024 Jan; 63(1):204-209. PubMed ID: 38175022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical gain optoelectronic oscillator based on a dual-frequency integrated semiconductor laser: potential to break the bandwidth limitation in the traditional OEO configuration.
    Li J; Pu T; Zheng J; Zhang Y; Shi Y; Shao W; Zhang X; Meng X; Liu J; Liu J; Chen X
    Opt Express; 2021 Jan; 29(2):1064-1075. PubMed ID: 33726328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic generation of a parabolic-shaped microwave signal and dual-linear-chirp microwave waveform.
    Kumar R; Raghuwanshi SK
    Appl Opt; 2020 Jul; 59(20):6024-6029. PubMed ID: 32672745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic generation of dual-band dual-chirp waveforms with anti-dispersion transmission.
    Yang S; Zhu W; Chi H; Yang B; Ou J; Zhai Y
    Appl Opt; 2023 May; 62(13):3512-3518. PubMed ID: 37132853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-band microwave signals generation based on a photonic sampling with a flexible ultra-short pulse source.
    Liu L; Peng D; Fu S; Wang Y; Qin Y
    Opt Express; 2022 Aug; 30(18):32151-32161. PubMed ID: 36242283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Modulated Approach for Improving MFSK RADARS to Resolve Mutual Interference on Autonomous Vehicles (AVs).
    Duke J; Neville E; Vargas J
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.
    Zhuang L; Beeker W; Leinse A; Heideman R; van Dijk P; Roeloffzen C
    Opt Express; 2013 Feb; 21(3):3114-24. PubMed ID: 23481769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser.
    Li J; Pu T; Zheng J; Zhang Y; Shi Y; Zhu H; Li Y; Zhang X; Zhao G; Zhou Y; Chen X
    Opt Express; 2018 Apr; 26(8):9676-9685. PubMed ID: 29715916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging.
    Zhang F; Guo Q; Wang Z; Zhou P; Zhang G; Sun J; Pan S
    Opt Express; 2017 Jul; 25(14):16274-16281. PubMed ID: 28789134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic generation of a dual-chirp waveform with an optoelectronic oscillator based on stimulated Brillouin scattering.
    Zhou W; Wang D; Du C; Ding Y; Dong W
    Appl Opt; 2021 Nov; 60(32):10120-10123. PubMed ID: 34807118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiband LFM waveform generation and band-selection using stimulated Brillouin scattering.
    Dhawan R; Parida D; Parihar R; Jha M; Choudhary A
    Appl Opt; 2023 Sep; 62(25):6737-6745. PubMed ID: 37706806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery.
    Pan B; Guo L; Zhang L; Lu D; Huo L; Lou C; Zhao L
    Appl Opt; 2016 Apr; 55(11):2930-5. PubMed ID: 27139856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer.
    Meng Z; Li J; Yin C; Fan Y; Yin F; Zhou Y; Dai Y; Xu K
    Opt Express; 2017 Sep; 25(18):22055-22065. PubMed ID: 29041495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.