These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38950233)

  • 1. Reducing beam tracking complexity using a phase ramp and Fresnel lens when steering beams using spatial light modulators.
    Spaander J; Guo J; Saathof R; Gill E
    Opt Lett; 2024 Jul; 49(13):3656-3659. PubMed ID: 38950233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam steering in a narrow-beam phosphor down-converted white light visible light communication link using transmitter lens decentering.
    Ahmad F; Biswas R; Raghunathan V
    Appl Opt; 2021 Apr; 60(10):2775-2782. PubMed ID: 33798151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator.
    Lindle JR; Watnik AT; Cassella VA
    Appl Opt; 2016 Jun; 55(16):4336-41. PubMed ID: 27411184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating Airy beams employing a transmissive spatial light modulator.
    Latychevskaia T; Schachtler D; Fink HW
    Appl Opt; 2016 Aug; 55(22):6095-101. PubMed ID: 27505393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators.
    Engström D; Hård S; Rudquist P; Dhavé K; Matuszczyk T; Skeren M; Löfving B
    Appl Opt; 2004 Mar; 43(7):1559-69. PubMed ID: 15015538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beam steering with two ferroelectric liquid-crystal spatial light modulators.
    Löfving B; Hård S
    Opt Lett; 1998 Oct; 23(19):1541-3. PubMed ID: 18091840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator.
    Engström D; Bengtsson J; Eriksson E; Goksör M
    Opt Express; 2008 Oct; 16(22):18275-87. PubMed ID: 18958104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators.
    Milewski G; Engström D; Bengtsson J
    Appl Opt; 2007 Jan; 46(1):95-105. PubMed ID: 17167560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System for demonstrating arbitrary multi-spot beam steering from spatial light modulators.
    Xun X; Chang X; Cohn R
    Opt Express; 2004 Jan; 12(2):260-8. PubMed ID: 19471532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance stationary solar tracking through multi-objective optimization of beam-steering lens arrays.
    Johnsen HJD; Aksnes A; Torgersen J
    Opt Express; 2020 Jul; 28(14):20503-20522. PubMed ID: 32680108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams.
    Gao Y; Chen Z; Ding J; Wang HT
    Appl Opt; 2019 Aug; 58(24):6591-6596. PubMed ID: 31503589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks.
    Buske P; Hofmann O; Bonnhoff A; Stollenwerk J; Holly C
    Opt Express; 2024 Feb; 32(5):7064-7078. PubMed ID: 38439397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction Efficiency of MEMS Phase Light Modulator, TI-PLM, for Quasi-Continuous and Multi-Point Beam Steering.
    Deng X; Tang CI; Luo C; Takashima Y
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time CGH Generation by CUDA-OpenGL Interoperability for Adaptive Beam Steering with a MEMS Phase SLM.
    Tang CI; Deng X; Takashima Y
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive conversion of multimode beam to near-diffraction-limited flattop beam based on dual-phase-only liquid-crystal spatial light modulators.
    Ma H; Zhao H; Zhou P; Wang X; Ma Y; Xu X; Liu Z
    Opt Express; 2010 Dec; 18(26):27723-30. PubMed ID: 21197047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression.
    Liang J; Wu SY; Fatemi FK; Becker MF
    Appl Opt; 2012 Jun; 51(16):3294-304. PubMed ID: 22695563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolutely interferometric calibration of phase liquid crystal spatial light modulators using honeycomb gratings composited with Billet-split Fresnel zone plates.
    Wang C; Shan J; Zhang J
    Appl Opt; 2024 Feb; 63(4):1105-1109. PubMed ID: 38437409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal structure of femtosecond Bessel beams from spatial light modulators.
    Froehly L; Jacquot M; Lacourt PA; Dudley JM; Courvoisier F
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):790-3. PubMed ID: 24695141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface.
    Li SQ; Xu X; Maruthiyodan Veetil R; Valuckas V; Paniagua-Domínguez R; Kuznetsov AI
    Science; 2019 Jun; 364(6445):1087-1090. PubMed ID: 31197013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators.
    Zhu L; Wang J
    Sci Rep; 2014 Dec; 4():7441. PubMed ID: 25501584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.