These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38950719)

  • 1. scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data.
    Zhang L; Xiang H; Wang F; Chen Z; Shen M; Ma J; Liu H; Zheng H
    Methods; 2024 Sep; 229():115-124. PubMed ID: 38950719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data.
    Su Y; Lin R; Wang J; Tan D; Zheng C
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.
    Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks.
    Xu L; Li Z; Ren J; Liu S; Xu Y
    Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data.
    Liu Z; Liang Y; Wang G; Zhang T
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39060167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning.
    Li B; Peng C; You Z; Zhang X; Zhang S
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.