These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38950719)

  • 21. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder.
    Luo Z; Xu C; Zhang Z; Jin W
    Sci Rep; 2021 Oct; 11(1):20028. PubMed ID: 34625592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.
    Yu B; Chen C; Qi R; Zheng R; Skillman-Lawrence PJ; Wang X; Ma A; Gu H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33300547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.
    Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis.
    Tian SW; Ni JC; Wang YT; Zheng CH; Ji CM
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6133-6143. PubMed ID: 37751336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. scAMAC: self-supervised clustering of scRNA-seq data based on adaptive multi-scale autoencoder.
    Tan D; Yang C; Wang J; Su Y; Zheng C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations.
    Mondal AK; Joshi I; Singh P; Ap P
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1983-1994. PubMed ID: 37015582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks.
    Buterez D; Bica I; Tariq I; Andrés-Terré H; Liò P
    Bioinformatics; 2022 Feb; 38(5):1277-1286. PubMed ID: 34864884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data.
    Liu L; Wu X; Yu J; Zhang Y; Niu K; Yu A
    Biology (Basel); 2024 Sep; 13(9):. PubMed ID: 39336140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder.
    Zhao J; Wang N; Wang H; Zheng C; Su Y
    Front Genet; 2021; 12():733906. PubMed ID: 34512734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clustering single-cell RNA sequencing data via iterative smoothing and self-supervised discriminative embedding.
    Xie J; Ruan S; Tu M; Yuan Z; Hu J; Li H; Li S
    Oncogene; 2024 Jul; 43(29):2279-2292. PubMed ID: 38834657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.