These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3895128)

  • 1. Ultrasonic measurement of transverse lens diameter during accommodation.
    Storey JK; Rabie EP
    Ophthalmic Physiol Opt; 1985; 5(2):145-8. PubMed ID: 3895128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior chamber pachymetry during accommodation in emmetropic and myopic eyes.
    Rabie EP; Steele C; Davies EG
    Ophthalmic Physiol Opt; 1986; 6(3):283-6. PubMed ID: 3822468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in lens dimensions and refractive index with age and accommodation.
    Jones CE; Atchison DA; Pope JM
    Optom Vis Sci; 2007 Oct; 84(10):990-5. PubMed ID: 18049365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound--a research tool in the study of accommodation.
    Storey JK; Rabie EP
    Ophthalmic Physiol Opt; 1983; 3(3):315-20. PubMed ID: 6646767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related behavior of posterior chamber lenses in myopic phakic eyes during accommodation measured by anterior segment partial coherence interferometry.
    Lege BA; Haigis W; Neuhann TF; Bauer MH
    J Cataract Refract Surg; 2006 Jun; 32(6):999-1006. PubMed ID: 16814059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and dynamic analysis of the anterior segment with optical coherence tomography.
    Baikoff G; Lutun E; Ferraz C; Wei J
    J Cataract Refract Surg; 2004 Sep; 30(9):1843-50. PubMed ID: 15342045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation.
    Schachar RA
    Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twenty-four-hour change in axial length in the rabbit eye.
    Liu JH; Farid H
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2796-9. PubMed ID: 9856794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Verisyse and Artiflex phakic intraocular lenses during accommodation using Visante optical coherence tomography.
    Güell JL; Morral M; Gris O; Gaytan J; Sisquella M; Manero F
    J Cataract Refract Surg; 2007 Aug; 33(8):1398-404. PubMed ID: 17662431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The measurement of eye axial length by ultrasound].
    Yang J; Song X; Wang Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 1997 Jan; 21(1):24-5. PubMed ID: 9644137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements.
    Wilson RS
    Trans Am Ophthalmol Soc; 1997; 95():261-7; discussion 267-70. PubMed ID: 9440174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient Axial Length Change during the Accommodation Response in Young Adults.
    Mallen EA; Kashyap P; Hampson KM
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1251-4. PubMed ID: 16505066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study.
    Strenk SA; Semmlow JL; Strenk LM; Munoz P; Gronlund-Jacob J; DeMarco JK
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1162-9. PubMed ID: 10235549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submicrometer precision biometry of the anterior segment of the human eye.
    Drexler W; Baumgartner A; Findl O; Hitzenberger CK; Sattmann H; Fercher AF
    Invest Ophthalmol Vis Sci; 1997 Jun; 38(7):1304-13. PubMed ID: 9191593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approximation for the whole profile of the human crystalline lens.
    Kasprzak HT
    Ophthalmic Physiol Opt; 2000 Jan; 20(1):31-43. PubMed ID: 10884928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [New technique of ultrasonic biometry (author's transl)].
    Lepper RD; Trier HG; Reuter R
    Klin Monbl Augenheilkd; 1980 Jul; 177(1):101-6. PubMed ID: 7453030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study.
    Hermans EA; Pouwels PJ; Dubbelman M; Kuijer JP; van der Heijde RG; Heethaar RM
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):281-9. PubMed ID: 18676625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonographic comparative study of the effect of pilocarpine and aceclidine on the eye components.
    François J; Goes F
    Bibl Ophthalmol; 1975; (83):320-7. PubMed ID: 1131237
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.