These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38951394)
21. Selective recycling of lithium from spent LiNi Zhang J; Ding Y; Shi H; Shao P; Yuan X; Hu X; Zhang Q; Zhang H; Luo D; Wang C; Yang L; Luo X J Environ Manage; 2024 Feb; 352():120021. PubMed ID: 38183916 [TBL] [Abstract][Full Text] [Related]
22. Recovery of valuable metals from spent lithium-ion batteries by complexation-assisted ammonia leaching from reductive roasting residue. Su F; Zhou X; Liu X; Yang J; Tang J; Yang W; Li Z; Wang H; Zhang Y; Ma Y Chemosphere; 2023 Jan; 312(Pt 1):137230. PubMed ID: 36375609 [TBL] [Abstract][Full Text] [Related]
23. A feasible process for recycling valuable metals from LiNi Liu DY; Sun SN; Li DY Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845 [TBL] [Abstract][Full Text] [Related]
24. Solidification/stabilization of spent cathode carbon from aluminum electrolysis by vitric, kaolin and calcification agent: fluorides immobilization and cyanides decomposition. Sang Y; Liang Z; Li C; Lu T; Zhu L; Sun Y; Gu Q Environ Sci Pollut Res Int; 2022 Dec; 29(56):85537-85546. PubMed ID: 35799010 [TBL] [Abstract][Full Text] [Related]
25. Early-stage recovery of lithium from spent batteries via CO Milicevic Neumann K; Ans M; Friedrich B Sci Rep; 2024 Jul; 14(1):17369. PubMed ID: 39075102 [TBL] [Abstract][Full Text] [Related]
26. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials. Li S; Zhu J J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398 [TBL] [Abstract][Full Text] [Related]
27. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting. Li N; Guo J; Chang Z; Dang H; Zhao X; Ali S; Li W; Zhou H; Sun C RSC Adv; 2019 Jul; 9(41):23908-23915. PubMed ID: 35530593 [TBL] [Abstract][Full Text] [Related]
28. Recovery of iron and aluminum from iron-rich bauxite residue by an integrated phase reconstruction approach. Liu J; Peng C; Jiang J; Zhang X; He D; Zhou K; Chen W Sci Total Environ; 2023 Dec; 904():166702. PubMed ID: 37652375 [TBL] [Abstract][Full Text] [Related]
29. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Chen X; Cao L; Kang D; Li J; Zhou T; Ma H Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000 [TBL] [Abstract][Full Text] [Related]
30. Preferential and efficient extraction of lithium under the combined action of reduction of herb-medicine residue and leaching of oxalic acid. Liu X; Wang B; Ma Y; Zhou X; Yang J; He Y; Tang J; Su F; Yang W Waste Manag; 2024 Feb; 174():44-52. PubMed ID: 38006757 [TBL] [Abstract][Full Text] [Related]
31. Acid Leaching Extraction Mechanism of Aluminum and Iron Ions from Coal Gangue Based on CaF Kong D; Zhou Z; Song S; Jiang R Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676241 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of leaching characteristic and kinetic study of lithium from lithium aluminum silicate glass-ceramics by NaOH. Lee D; Joo SH; Shin DJ; Shin SM J Environ Sci (China); 2021 Sep; 107():98-110. PubMed ID: 34412791 [TBL] [Abstract][Full Text] [Related]
33. Leaching Li from mixed cathode materials of spent lithium-ion batteries Zha Y; Li Y; Fei Z; Fan C; Meng Q; Peng X; Dong P Dalton Trans; 2024 Mar; 53(12):5592-5600. PubMed ID: 38436061 [TBL] [Abstract][Full Text] [Related]
34. Pre-separation combined with reduction roasting for high-quality recovery of graphite and lithium from spent lithium ion batteries. Zhang G; Jiang T; He Y; Wang H; Yuan X Waste Manag; 2024 Oct; 187():244-251. PubMed ID: 39074419 [TBL] [Abstract][Full Text] [Related]
35. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting. Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439 [TBL] [Abstract][Full Text] [Related]
36. Effective Extraction of the Al Element from Secondary Aluminum Dross Using a Combined Dry Pressing and Alkaline Roasting Process. Lv H; Xie M; Wu Z; Li L; Yang R; Han J; Liu F; Zhao H Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013821 [TBL] [Abstract][Full Text] [Related]
37. A novel process for multi-stage continuous selective leaching of lithium from industrial-grade complicated lithium-ion battery waste. Zhao T; Traversy M; Choi Y; Ghahreman A Sci Total Environ; 2024 Jan; 909():168533. PubMed ID: 37981164 [TBL] [Abstract][Full Text] [Related]
38. Direct selective leaching of lithium from industrial-grade black mass of waste lithium-ion batteries containing LiFePO Zhao T; Marthi R; Mahandra H; Chae S; Traversy M; Sadri F; Choi Y; Ghahreman A Waste Manag; 2023 Aug; 171():134-142. PubMed ID: 37657286 [TBL] [Abstract][Full Text] [Related]
39. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Li L; Ge J; Chen R; Wu F; Chen S; Zhang X Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431 [TBL] [Abstract][Full Text] [Related]
40. New insights on scandium separation from scandium concentrate with titanium dioxide wastewater. Xiao J; Zhong N; Cheng R; Deng B; Zhang J Environ Sci Pollut Res Int; 2024 Feb; 31(10):15837-15850. PubMed ID: 38305971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]