These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38951770)

  • 1. Caries lesions diagnosis with deep convolutional neural network in intraoral QLF images by handheld device.
    Tan R; Zhu X; Chen S; Zhang J; Liu Z; Li Z; Fan H; Wang X; Yang L
    BMC Oral Health; 2024 Jun; 24(1):754. PubMed ID: 38951770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo.
    Park EY; Jeong S; Kang S; Cho J; Cho JY; Kim EK
    BMC Oral Health; 2023 Dec; 23(1):981. PubMed ID: 38066624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fluorescence parameters between three generations of QLF devices for detecting enamel caries in vitro and on smooth surfaces.
    Park SW; Kim SK; Lee HS; Lee ES; de Josselin de Jong E; Kim BI
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():142-147. PubMed ID: 30508664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diagnostic efficacy of quantitative light-induced fluorescence in detection of dental caries of primary teeth.
    Cho KH; Kang CM; Jung HI; Lee HS; Lee K; Lee TY; Song JS
    J Dent; 2021 Dec; 115():103845. PubMed ID: 34637890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
    Lee JH; Kim DH; Jeong SN; Choi SH
    J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs.
    Bayraktar Y; Ayan E
    Clin Oral Investig; 2022 Jan; 26(1):623-632. PubMed ID: 34173051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Dental Caries and Cracks with Quantitative Light-Induced Fluorescence in Comparison to Radiographic and Visual Examination: A Retrospective Case Study.
    Oh SH; Lee SR; Choi JY; Choi YS; Kim SH; Yoon HC; Nelson G
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of dental caries detection with quantitative light-induced fluorescence in comparison to different field of view devices.
    Oh SH; Choi JY; Kim SH
    Sci Rep; 2022 Apr; 12(1):6139. PubMed ID: 35414687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caries Detection on Intraoral Images Using Artificial Intelligence.
    Kühnisch J; Meyer O; Hesenius M; Hickel R; Gruhn V
    J Dent Res; 2022 Feb; 101(2):158-165. PubMed ID: 34416824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a fluorescence-image scoring system for assessing noncavitated occlusal caries.
    Jung EH; Lee ES; Jung HI; Kang SM; de Josselin de Jong E; Kim BI
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():36-42. PubMed ID: 29102651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of quantitative light-induced fluorescence-digital (QLF-D) for the detection of approximal caries in vitro.
    Ko HY; Kang SM; Kim HE; Kwon HK; Kim BI
    J Dent; 2015 May; 43(5):568-75. PubMed ID: 25724115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study.
    Schwendicke F; Elhennawy K; Paris S; Friebertshäuser P; Krois J
    J Dent; 2020 Jan; 92():103260. PubMed ID: 31821853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Proximal Caries Lesions on Bitewing Radiographs Using Deep Learning Method.
    Chen X; Guo J; Ye J; Zhang M; Liang Y
    Caries Res; 2022; 56(5-6):455-463. PubMed ID: 36215971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of initial caries lesions on smooth surfaces by quantitative light-induced fluorescence and visual examination: an in vivo comparison.
    Heinrich-Weltzien R; Kühnisch J; Ifland S; Tranaeus S; Angmar-Månsson B; Stösser L
    Eur J Oral Sci; 2005 Dec; 113(6):494-8. PubMed ID: 16324139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence devices for the detection of dental caries.
    Macey R; Walsh T; Riley P; Glenny AM; Worthington HV; Fee PA; Clarkson JE; Ricketts D
    Cochrane Database Syst Rev; 2020 Dec; 12(12):CD013811. PubMed ID: 33319353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro Detection of Occlusal Caries on Permanent Teeth by a Visual, Light-Induced Fluorescence and Photothermal Radiometry and Modulated Luminescence Methods.
    Jallad M; Zero D; Eckert G; Ferreira Zandona A
    Caries Res; 2015; 49(5):523-30. PubMed ID: 26316073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new screening method to detect proximal dental caries using fluorescence imaging.
    Kim ES; Lee ES; Kang SM; Jung EH; de Josselin de Jong E; Jung HI; Kim BI
    Photodiagnosis Photodyn Ther; 2017 Dec; 20():257-262. PubMed ID: 29079349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnosis of Interproximal Caries Lesions in Bitewing Radiographs Using a Deep Convolutional Neural Network-Based Software.
    García-Cañas Á; Bonfanti-Gris M; Paraíso-Medina S; Martínez-Rus F; Pradíes G
    Caries Res; 2022; 56(5-6):503-511. PubMed ID: 36318884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of pulp exposure risk of carious pulpitis based on deep learning.
    Wang L; Wu F; Xiao M; Chen YX; Wu L
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2023 Apr; 41(2):218-224. PubMed ID: 37056189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of light-emitting diode device in detecting occlusal caries in the primary molars.
    Diniz MB; Campos PH; Wilde S; Cordeiro RCL; Zandona AGF
    Lasers Med Sci; 2019 Aug; 34(6):1235-1241. PubMed ID: 30673922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.