BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38951884)

  • 1. RIBAP: a comprehensive bacterial core genome annotation pipeline for pangenome calculation beyond the species level.
    Lamkiewicz K; Barf LM; Sachse K; Hölzer M
    Genome Biol; 2024 Jul; 25(1):170. PubMed ID: 38951884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. POCP-nf: an automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy.
    Hölzer M
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38561180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Producing polished prokaryotic pangenomes with the Panaroo pipeline.
    Tonkin-Hill G; MacAlasdair N; Ruis C; Weimann A; Horesh G; Lees JA; Gladstone RA; Lo S; Beaudoin C; Floto RA; Frost SDW; Corander J; Bentley SD; Parkhill J
    Genome Biol; 2020 Jul; 21(1):180. PubMed ID: 32698896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining orthologs and pangenome size metrics.
    Bosi E; Fani R; Fondi M
    Methods Mol Biol; 2015; 1231():191-202. PubMed ID: 25343867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Genome Analysis of 33
    Hölzer M; Barf LM; Lamkiewicz K; Vorimore F; Lataretu M; Favaroni A; Schnee C; Laroucau K; Marz M; Sachse K
    Pathogens; 2020 Oct; 9(11):. PubMed ID: 33126635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.
    Tanizawa Y; Fujisawa T; Nakamura Y
    Bioinformatics; 2018 Mar; 34(6):1037-1039. PubMed ID: 29106469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roary: rapid large-scale prokaryote pan genome analysis.
    Page AJ; Cummins CA; Hunt M; Wong VK; Reuter S; Holden MT; Fookes M; Falush D; Keane JA; Parkhill J
    Bioinformatics; 2015 Nov; 31(22):3691-3. PubMed ID: 26198102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Pangenomes with Roary.
    Sitto F; Battistuzzi FU
    Mol Biol Evol; 2020 Mar; 37(3):933-939. PubMed ID: 31848603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN.
    Zhou Z; Charlesworth J; Achtman M
    Genome Res; 2020 Nov; 30(11):1667-1679. PubMed ID: 33055096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical sets: analyzing pangenome structure through scalable set visualizations.
    Pedersen TL
    Bioinformatics; 2017 Jun; 33(11):1604-1612. PubMed ID: 28130242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case.
    Yu GX; Snyder EE; Boyle SM; Crasta OR; Czar M; Mane SP; Purkayastha A; Sobral B; Setubal JC
    Nucleic Acids Res; 2007; 35(12):3953-62. PubMed ID: 17553834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome graph.
    Gautreau G; Bazin A; Gachet M; Planel R; Burlot L; Dubois M; Perrin A; Médigue C; Calteau A; Cruveiller S; Matias C; Ambroise C; Rocha EPC; Vallenet D
    PLoS Comput Biol; 2020 Mar; 16(3):e1007732. PubMed ID: 32191703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NGSPanPipe: A Pipeline for Pan-genome Identification in Microbial Strains from Experimental Reads.
    Kulsum U; Kapil A; Singh H; Kaur P
    Adv Exp Med Biol; 2018; 1052():39-49. PubMed ID: 29785479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate and fast graph-based pangenome annotation and clustering with ggCaller.
    Horsfield ST; Tonkin-Hill G; Croucher NJ; Lees JA
    Genome Res; 2023 Sep; 33(9):1622-1637. PubMed ID: 37620118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MyPro: A seamless pipeline for automated prokaryotic genome assembly and annotation.
    Liao YC; Lin HH; Sabharwal A; Haase EM; Scannapieco FA
    J Microbiol Methods; 2015 Jun; 113():72-4. PubMed ID: 25911337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.
    Xie Z; Tang H
    Bioinformatics; 2017 Nov; 33(21):3340-3347. PubMed ID: 29077810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes.
    Wu YW
    BMC Genomics; 2018 Jan; 19(Suppl 1):921. PubMed ID: 29363425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rephine.r: a pipeline for correcting gene calls and clusters to improve phage pangenomes and phylogenies.
    Shapiro JW; Putonti C
    PeerJ; 2021; 9():e11950. PubMed ID: 34434663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome.
    Collins RE; Higgs PG
    Mol Biol Evol; 2012 Nov; 29(11):3413-25. PubMed ID: 22752048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.