These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38952078)

  • 61. Evaluation of seven commercial African swine fever virus detection kits and three Taq polymerases on 300 well-characterized field samples.
    Schoder ME; Tignon M; Linden A; Vervaeke M; Cay AB
    J Virol Methods; 2020 Jun; 280():113874. PubMed ID: 32360149
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rapid Sequence-Based Characterization of African Swine Fever Virus by Use of the Oxford Nanopore MinION Sequence Sensing Device and a Companion Analysis Software Tool.
    O'Donnell VK; Grau FR; Mayr GA; Sturgill Samayoa TL; Dodd KA; Barrette RW
    J Clin Microbiol; 2019 Dec; 58(1):. PubMed ID: 31694969
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Virological diagnosis of African swine fever--comparative study of available tests.
    Oura CA; Edwards L; Batten CA
    Virus Res; 2013 Apr; 173(1):150-8. PubMed ID: 23131492
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Non-nucleic acid extraction and ultra-sensitive detection of African swine fever virus via CRISPR/Cas12a.
    Cao G; Xiong Y; Nie F; Chen X; Peng L; Li Y; Yang M; Huo D; Hou C
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4695-4704. PubMed ID: 35715648
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stability of African swine fever virus on heat-treated field crops.
    Fischer M; Mohnke M; Probst C; Pikalo J; Conraths FJ; Beer M; Blome S
    Transbound Emerg Dis; 2020 Nov; 67(6):2318-2323. PubMed ID: 32460443
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative evaluation of nucleic acid-based assays for detection of Japanese encephalitis virus in swine blood samples.
    Dhanze H; Bhilegaonkar KN; Ravi Kumar GV; Thomas P; Chethan Kumar HB; Suman Kumar M; Rawat S; Kerketta P; Rawool DB; Kumar A
    Arch Virol; 2015 May; 160(5):1259-66. PubMed ID: 25772573
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development and comparison of novel multiple cross displacement amplification (MCDA) assays with other nucleic acid amplification methods for SARS-CoV-2 detection.
    Luu LDW; Payne M; Zhang X; Luo L; Lan R
    Sci Rep; 2021 Jan; 11(1):1873. PubMed ID: 33479389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample.
    Foo PC; Nurul Najian AB; Muhamad NA; Ahamad M; Mohamed M; Yean Yean C; Lim BH
    BMC Biotechnol; 2020 Jun; 20(1):34. PubMed ID: 32571286
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple-probe-assisted DNA capture and amplification for high-throughput African swine fever virus detection.
    Wang H; Pian H; Fan L; Li J; Yang J; Zheng Z
    Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):797-805. PubMed ID: 36576568
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus.
    Chen Y; Shi K; Liu H; Yin Y; Zhao J; Long F; Lu W; Si H
    J Vet Sci; 2021 Nov; 22(6):e87. PubMed ID: 34854269
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of a quadruple PCR-based gene microarray for detection of vaccine and wild-type classical swine fever virus, African swine fever virus and atypical porcine pestivirus.
    Xia YJ; Xu L; Zhao JJ; Li YX; Wu RZ; Song XP; Zhao QZ; Liu YB; Wang Q; Zhang QY
    Virol J; 2022 Nov; 19(1):201. PubMed ID: 36447230
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visual isothermal amplification detection of ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas-12a.
    Chen Q; Tu F; Chen X; Yu Y; Gu Y; Wang Y; Liu Z
    Anal Biochem; 2023 Sep; 676():115235. PubMed ID: 37422063
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of a suspension microarray for the genotyping of African swine fever virus targeting the SNPs in the C-terminal end of the p72 gene region of the genome.
    Leblanc N; Cortey M; Fernandez Pinero J; Gallardo C; Masembe C; Okurut AR; Heath L; van Heerden J; Sánchez-Vizcaino JM; Ståhl K; Belák S
    Transbound Emerg Dis; 2013 Aug; 60(4):378-83. PubMed ID: 22776009
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Simple Method for Sample Preparation to Facilitate Efficient Whole-Genome Sequencing of African Swine Fever Virus.
    Olasz F; Mészáros I; Marton S; Kaján GL; Tamás V; Locsmándi G; Magyar T; Bálint Á; Bányai K; Zádori Z
    Viruses; 2019 Dec; 11(12):. PubMed ID: 31817647
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of a nested PCR and its internal control for the detection of African swine fever virus (ASFV) in Ornithodoros erraticus.
    Basto AP; Portugal RS; Nix RJ; Cartaxeiro C; Boinas F; Dixon LK; Leitão A; Martins C
    Arch Virol; 2006 Apr; 151(4):819-26. PubMed ID: 16328146
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of a loop-mediated isothermal amplification assay combined with a lateral flow dipstick for rapid and simple detection of classical swine fever virus in the field.
    Chowdry VK; Luo Y; Widén F; Qiu HJ; Shan H; Belák S; Liu L
    J Virol Methods; 2014 Mar; 197():14-8. PubMed ID: 24300833
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simplifying sampling for African swine fever surveillance: Assessment of antibody and pathogen detection from blood swabs.
    Carlson J; Zani L; Schwaiger T; Nurmoja I; Viltrop A; Vilem A; Beer M; Blome S
    Transbound Emerg Dis; 2018 Feb; 65(1):e165-e172. PubMed ID: 28921878
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system.
    He Q; Yu D; Bao M; Korensky G; Chen J; Shin M; Kim J; Park M; Qin P; Du K
    Biosens Bioelectron; 2020 Apr; 154():112068. PubMed ID: 32056963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development and application of a duplex real-time PCR assay for differentiation of genotypes I and II African swine fever viruses.
    Li X; Hu Y; Liu P; Zhu Z; Liu P; Chen C; Wu X
    Transbound Emerg Dis; 2022 Sep; 69(5):2971-2979. PubMed ID: 35061937
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid Visible Detection of African Swine Fever Virus Using Hybridization Chain Reaction-Sensitized Magnetic Nanoclusters and Affinity Chromatography.
    Lee H; Lee S; Park C; Yeom M; Lim JW; Vu TTH; Kim E; Song D; Haam S
    Small; 2023 Jun; 19(26):e2207117. PubMed ID: 36960666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.