BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38952181)

  • 1. The influence of drying routes on the properties of anisotropic all-cellulose composite foams from post-consumer cotton clothing.
    Schiele C; Ruiz-Caldas MX; Wu T; Nocerino E; Åhl A; Mathew AP; Nyström G; Bergström L; Apostolopoulou-Kalkavoura V
    Nanoscale; 2024 Jul; ():. PubMed ID: 38952181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Insulating and Moisture-Resilient Foams Based on Upcycled Aramid Nanofibers and Nanocellulose.
    Di A; Schiele C; Hadi SE; Bergström L
    Adv Mater; 2023 Nov; 35(48):e2305195. PubMed ID: 37735848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic foams derived from textile-based cellulose nanocrystals and xanthan gum.
    Ruiz-Caldas MX; Schiele C; Hadi SE; Andersson M; Mohammadpour P; Bergström L; Mathew AP; Apostolopoulou-Kalkavoura V
    Carbohydr Polym; 2024 Aug; 338():122212. PubMed ID: 38763714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sclerotization-Inspired Aminoquinone Cross-Linking of Thermally Insulating and Moisture-Resilient Biobased Foams.
    Kriechbaum K; Apostolopoulou-Kalkavoura V; Munier P; Bergström L
    ACS Sustain Chem Eng; 2020 Nov; 8(47):17408-17416. PubMed ID: 33344097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
    Gordeyeva KS; Fall AB; Hall S; Wicklein B; Bergström L
    J Colloid Interface Sci; 2016 Jun; 472():44-51. PubMed ID: 27003498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams.
    Apostolopoulou-Kalkavoura V; Munier P; Dlugozima L; Heuthe VL; Bergström L
    Sci Rep; 2021 Sep; 11(1):18685. PubMed ID: 34548539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-structure-property relationship of wood particles in aqueous and dry insulative foams.
    Dobrzanski E; Ferreira ES; Tiwary P; Agrawal P; Chen R; Cranston ED
    Carbohydr Polym; 2024 Jul; 335():122077. PubMed ID: 38616097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Different Methods to Synthesize Polyol-Grafted-Cellulose Nanocrystals as Inter-Active Filler in Bio-Based Polyurethane Foams.
    Fontana D; Recupido F; Lama GC; Liu J; Boggioni L; Silvano S; Lavorgna M; Verdolotti L
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly magnetic hybrid foams based on aligned tannic acid-coated iron oxide nanoparticles and TEMPO-oxidized cellulose nanofibers.
    Hadi SE; Yeprem HA; Åhl A; Morsali M; Kapuscinski M; Kriechbaum K; Sipponen MH; Bergström L
    RSC Adv; 2023 May; 13(20):13919-13927. PubMed ID: 37181513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose-based composite thermal-insulating foams toward eco-friendly, flexible and flame-retardant.
    Jiang S; Zhang M; Li M; Zhu J; Ge A; Liu L; Yu J
    Carbohydr Polym; 2021 Dec; 273():118544. PubMed ID: 34560956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach.
    Antonini C; Wu T; Zimmermann T; Kherbeche A; Thoraval MJ; Nyström G; Geiger T
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31404987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties.
    Liu D; Ma Z; Wang Z; Tian H; Gu M
    Langmuir; 2014 Aug; 30(31):9544-50. PubMed ID: 25062502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Structure of Cellulose Nanofibril-Based Foams Explored by Multimodal X-ray Scattering.
    Lutz-Bueno V; Diaz A; Wu T; Nyström G; Geiger T; Antonini C
    Biomacromolecules; 2022 Mar; 23(3):676-686. PubMed ID: 35194986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable cellulose foams for all-weather high-performance radiative cooling and building insulation.
    Bai Y; Jia X; Shan Z; Huang C; Wang D; Yang J; Pang B; Song H
    Carbohydr Polym; 2024 Jun; 333():121951. PubMed ID: 38494216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile Assembly of Metal-Phenolic Network Foams Enabled by Tannin-Cellulose Nanofibers.
    Mattos BD; Zhu Y; Tardy BL; Beaumont M; Ribeiro ACR; Missio AL; Otoni CG; Rojas OJ
    Adv Mater; 2023 Mar; 35(12):e2209685. PubMed ID: 36734159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils.
    Ghanadpour M; Wicklein B; Carosio F; Wågberg L
    Nanoscale; 2018 Feb; 10(8):4085-4095. PubMed ID: 29431818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles.
    Abidnejad R; Beaumont M; Tardy BL; Mattos BD; Rojas OJ
    ACS Nano; 2021 Dec; 15(12):19712-19721. PubMed ID: 34784178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excellent Specific Mechanical and Electrical Properties of Anisotropic Freeze-Cast Native and Carbonized Bacterial Cellulose-Alginate Foams.
    Qiu K; Wegst UGK
    Adv Funct Mater; 2022 Jan; 32(1):. PubMed ID: 37476032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.