These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38952645)

  • 1. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis.
    Zhou T; Ye Y; Zhu Q; Vann W; Du J
    Front Hum Neurosci; 2024; 18():1338453. PubMed ID: 38952645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory manipulation as a countermeasure to robot teleoperation delays: system and evidence.
    Du J; Vann W; Zhou T; Ye Y; Zhu Q
    Sci Rep; 2024 Feb; 14(1):4333. PubMed ID: 38383745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: An fNIRS based pilot study.
    Zheng J; Ma Q; He W; Huang Y; Shi P; Li S; Yu H
    Front Hum Neurosci; 2023; 17():1089276. PubMed ID: 36845877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Control of a New Asymmetric Teleoperation Robot Based on a State Observer.
    Shi B; Wu H; Zhu Y; Shang M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Haptic Feedback in Vision-Deficient Millirobot Telemanipulation.
    Riaziat ND; Erin O; Krieger A; Brown JD
    IEEE Robot Autom Lett; 2024 Jul; 9(7):6178-6185. PubMed ID: 38948904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AiroTouch: enhancing telerobotic assembly through naturalistic haptic feedback of tool vibrations.
    Gong Y; Mat Husin H; Erol E; Ortenzi V; Kuchenbecker KJ
    Front Robot AI; 2024; 11():1355205. PubMed ID: 38835928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sensory substitution on suture manipulation forces for surgical teleoperation.
    Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD
    Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Telepresence augmentation for visual and haptic guided immersive teleoperation of industrial manipulator.
    Huang F; Yang X; Yan T; Chen Z
    ISA Trans; 2024 Jul; 150():262-277. PubMed ID: 38749885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Efficiency of Human-Robotic Feedback Modalities Under Stress Differs With Gender.
    Nuamah JK; Mantooth W; Karthikeyan R; Mehta RK; Ryu SC
    Front Hum Neurosci; 2019; 13():287. PubMed ID: 31543765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teleoperated Surgical Robot with Adaptive Interactive Control Architecture for Tissue Identification.
    Sheng Y; Cheng H; Wang Y; Zhao H; Ding H
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-Haptic Feedback in Teleoperation.
    Neupert C; Matich S; Scherping N; Kupnik M; Werthschutzky R; Hatzfeld C
    IEEE Trans Haptics; 2016; 9(3):397-408. PubMed ID: 27116752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High Performance Tactile Feedback Display and Its Integration in Teleoperation.
    Sarakoglou I; Garcia-Hernandez N; Tsagarakis NG; Caldwell DG
    IEEE Trans Haptics; 2012; 5(3):252-63. PubMed ID: 26964111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.