These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38952645)

  • 21. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upper limb intelligent feedback robot training significantly activates the cerebral cortex and promotes the functional connectivity of the cerebral cortex in patients with stroke: A functional near-infrared spectroscopy study.
    Li H; Fu X; Lu L; Guo H; Yang W; Guo K; Huang Z
    Front Neurol; 2023; 14():1042254. PubMed ID: 36814999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Synchronization Tracking Adaptive Control for Bilateral Teleoperation System with Time-Varying Delays.
    Chen K; Zhang H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grip Force Control During Virtual Interaction With Deformable and Rigid Objects Via a Haptic Gripper.
    Milstein A; Alyagon L; Nisky I
    IEEE Trans Haptics; 2021; 14(3):564-576. PubMed ID: 33606636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the Role of Gaze Tracking in Optimizing Humans-In-The-Loop Telerobotic Operation Using Multimodal Feedback.
    Bolarinwa J; Eimontaite I; Mitchell T; Dogramadzi S; Caleb-Solly P
    Front Robot AI; 2021; 8():578596. PubMed ID: 34671646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haptic Feedback Perception and Learning With Cable-Driven Guidance in Exosuit Teleoperation of a Simulated Drone.
    Rognon C; Ramachandran V; Wu AR; Ijspeert AJ; Floreano D
    IEEE Trans Haptics; 2019; 12(3):375-385. PubMed ID: 31251196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
    Khurshid RP; Fitter NT; Fedalei EA; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):40-53. PubMed ID: 27249838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leveraging Haptic Feedback to Improve Data Quality and Quantity for Deep Imitation Learning Models.
    Cuan C; Okamura A; Khansari M
    IEEE Trans Haptics; 2024 Apr; PP():. PubMed ID: 38568762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing motor cortex activation during grasping via novel robotic mirror hand therapy: a pilot fNIRS study.
    Kim DH; Lee KD; Bulea TC; Park HS
    J Neuroeng Rehabil; 2022 Jan; 19(1):8. PubMed ID: 35073933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.
    Meli L; Pacchierotti C; Prattichizzo D
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1318-27. PubMed ID: 24658255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cutaneous Force Feedback as a Sensory Subtraction Technique in Haptics.
    Prattichizzo D; Pacchierotti C; Rosati G
    IEEE Trans Haptics; 2012; 5(4):289-300. PubMed ID: 26964127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comprehensive review of haptic feedback in minimally invasive robotic liver surgery: Advancements and challenges.
    Selim M; Dresscher D; Abayazid M
    Int J Med Robot; 2023 Dec; ():e2605. PubMed ID: 38071613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.