BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38952647)

  • 21. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.
    Siddon EC; Kristiansen T; Mueter FJ; Holsman KK; Heintz RA; Farley EV
    PLoS One; 2013; 8(12):e84526. PubMed ID: 24391963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstructing reef fish communities using fish otoliths in coral reef sediments.
    Lin CH; De Gracia B; Pierotti MER; Andrews AH; Griswold K; O'Dea A
    PLoS One; 2019; 14(6):e0218413. PubMed ID: 31199853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study on the morphology and the composition of the otoliths in the teleosts.
    Yamauchi M; Tanaka J; Harada Y
    Acta Otolaryngol; 2008 Aug; 128(8):846-55. PubMed ID: 18607888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residues of PBDEs in northeastern Pacific marine fish: evidence for spatial and temporal trends.
    Ikonomou MG; Teas HJ; Gerlach R; Higgs D; Addison RF
    Environ Toxicol Chem; 2011 Jun; 30(6):1261-71. PubMed ID: 21360729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea.
    Ding J; Ju P; Ran Q; Li J; Jiang F; Cao W; Zhang J; Sun C
    Sci Adv; 2023 Jul; 9(27):eadf5897. PubMed ID: 37418528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natal origin of Pacific bluefin tuna from the California Current Large Marine Ecosystem.
    Wells RJD; Mohan JA; Dewar H; Rooker JR; Tanaka Y; Snodgrass OE; Kohin S; Miller NR; Ohshimo S
    Biol Lett; 2020 Feb; 16(2):20190878. PubMed ID: 32019467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?
    Sturrock AM; Trueman CN; Darnaude AM; Hunter E
    J Fish Biol; 2012 Jul; 81(2):766-95. PubMed ID: 22803735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seeking the true time: Exploring otolith chemistry as an age-determination tool.
    Heimbrand Y; Limburg KE; Hüssy K; Casini M; Sjöberg R; Palmén Bratt AM; Levinsky SE; Karpushevskaia A; Radtke K; Öhlund J
    J Fish Biol; 2020 Aug; 97(2):552-565. PubMed ID: 32515105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiocarbon in otoliths of tropical marine fishes: Reference Δ14C chronology for north Caribbean waters.
    Shervette VR; Overly KE; Rivera Hernández JM
    PLoS One; 2021; 16(5):e0251442. PubMed ID: 33979387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of otolith chemistry to characterize diadromous migrations.
    Walther BD; Limburg KE
    J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.
    Duffy-Anderson JT; Stabeno PJ; Siddon EC; Andrews AG; Cooper DW; Eisner LB; Farley EV; Harpold CE; Heintz RA; Kimmel DG; Sewall FF; Spear AH; Yasumishii EC
    PLoS One; 2017; 12(6):e0178955. PubMed ID: 28658253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Larval history of glass eels, Anguilla anguilla (Linné, 1758) in migration in coastal and estuary areas (Adour, Gulf of Gascogne) as revealed by otolith test].
    de Casamajor MN; Lecomte-Finiger R; Prouzet P
    C R Acad Sci III; 2001 Nov; 324(11):1011-9. PubMed ID: 11725699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using otolith and body shape to discriminate between stocks of European anchovy (Engraulidae: Engraulis encrasicolus) from the Aegean, Marmara and Black Seas.
    Dürrani Ö; Bal H; Battal ZS; Seyhan K
    J Fish Biol; 2022 Dec; 101(6):1452-1465. PubMed ID: 36097416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of cooking effects on otolith stable carbon and oxygen isotope values of teleostean fish Pomadasys kaakan (Cuvier, 1830).
    Wang YC; Chang YJ; Wang PL; Shiao JC
    Rapid Commun Mass Spectrom; 2022 Feb; 36(4):e9233. PubMed ID: 34877723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lack of geographic structure in mitochondrial DNA sequences of Bering Sea walleye pollock, Theragra chalcogramma.
    Shields GF; Gust JR
    Mol Mar Biol Biotechnol; 1995 Mar; 4(1):69-82. PubMed ID: 7749468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trait-based climate vulnerability assessments in data-rich systems: An application to eastern Bering Sea fish and invertebrate stocks.
    Spencer PD; Hollowed AB; Sigler MF; Hermann AJ; Nelson MW
    Glob Chang Biol; 2019 Nov; 25(11):3954-3971. PubMed ID: 31531923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All in the ears: unlocking the early life history biology and spatial ecology of fishes.
    Starrs D; Ebner BC; Fulton CJ
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):86-105. PubMed ID: 25424431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisakis spp. in fishery products from Japanese waters: Updated insights on host prevalence and human infection risk factors.
    Gomes TL; Quiazon KMA; Kotake M; Itoh N; Yoshinaga T
    Parasitol Int; 2020 Oct; 78():102137. PubMed ID: 32439483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma.
    Grant WS; Spies IB; Canino MF
    J Hered; 2006; 97(6):571-80. PubMed ID: 17038421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Migratory patterns of exotic brown trout Salmo trutta in south-western Hokkaido, Japan, on the basis of otolith Sr:Ca ratios and acoustic telemetry.
    Honda K; Arai T; Kobayashi S; Tsuda Y; Miyashita K
    J Fish Biol; 2012 Feb; 80(2):408-26. PubMed ID: 22268438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.