BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38952656)

  • 1. Temporal patterns in multiple stressors shape the vulnerability of overwintering Arctic zooplankton.
    Dania A; Lutier M; Heimböck MP; Heuschele J; Søreide JE; Jackson MC; Dinh KV
    Ecol Evol; 2024 Jul; 14(7):e11673. PubMed ID: 38952656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Pyrene Exposure during Overwintering of the Arctic Copepod Calanus glacialis.
    Toxværd K; Van Dinh K; Henriksen O; Hjorth M; Nielsen TG
    Environ Sci Technol; 2018 Sep; 52(18):10328-10336. PubMed ID: 30130096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus.
    Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG
    Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cumulative Impacts of Oil Pollution, Ocean Warming, and Coastal Freshening on the Feeding of Arctic Copepods.
    Rist S; Rask S; Ntinou IV; Varpe Ø; Lindegren M; Ugwu K; Larsson M; Sjöberg V; Nielsen TG
    Environ Sci Technol; 2024 Feb; ():. PubMed ID: 38321867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ingestion and impact of microplastics on arctic Calanus copepods.
    Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG
    Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic.
    Botterell ZLR; Bergmann M; Hildebrandt N; Krumpen T; Steinke M; Thompson RC; Lindeque PK
    Sci Total Environ; 2022 Jul; 831():154886. PubMed ID: 35364160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental niche overlap in sibling planktonic species
    Weydmann-Zwolicka A; Cottier F; Berge J; Majaneva S; Kukliński P; Zwolicki A
    Ecol Evol; 2022 Dec; 12(12):e9569. PubMed ID: 36514547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations.
    Kvile KØ; Ashjian C; Feng Z; Zhang J; Ji R
    Glob Chang Biol; 2018 Nov; 24(11):5426-5439. PubMed ID: 30099832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions.
    Almeda R; Rodriguez-Torres R; Rist S; Winding MHS; Stief P; Hansen BH; Nielsen TG
    Sci Total Environ; 2021 Jan; 751():141264. PubMed ID: 32871308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts.
    Hansen BH; Tarrant AM; Lenz PH; Roncalli V; Almeda R; Broch OJ; Altin D; Tollefsen KE
    Aquat Toxicol; 2024 Feb; 267():106825. PubMed ID: 38176169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing determines zooplankton community responses to multiple stressors.
    Sun X; Arnott SE
    Glob Chang Biol; 2024 Jun; 30(6):e17358. PubMed ID: 38822590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions.
    Weydmann A; Przyłucka A; Lubośny M; Walczyńska KS; Serrão EA; Pearson GA; Burzyński A
    Sci Rep; 2017 Oct; 7(1):13702. PubMed ID: 29057900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics drive synergism of land use and climatic extreme events in insect meta-populations.
    Streib L; Juvigny-Khenafou N; Heer H; Kattwinkel M; Schäfer RB
    Sci Total Environ; 2022 Mar; 814():152602. PubMed ID: 34958839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods.
    Grenvald JC; Nielsen TG; Hjorth M
    Ecotoxicology; 2013 Jan; 22(1):184-98. PubMed ID: 23143803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene.
    Yadetie F; Brun NR; Giebichenstein J; Dmoch K; Hylland K; Borgå K; Karlsen OA; Goksøyr A
    Mar Genomics; 2022 Oct; 65():100981. PubMed ID: 35969942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean.
    Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ
    Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Winter is coming: Interactions of multiple stressors in winter and implications for the natural world.
    Dinh KV; Albini D; Orr JA; Macaulay SJ; Rillig MC; Borgå K; Jackson MC
    Glob Chang Biol; 2023 Dec; 29(24):6834-6845. PubMed ID: 37776127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.