BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38952809)

  • 1. Differential spatial working memory-related functional network reconfiguration in young and older adults.
    Yue WL; Ng KK; Liu S; Qian X; Chong JSX; Koh AJ; Ong MQW; Ting SKS; Ng ASL; Kandiah N; Yeo BTT; Zhou JH
    Netw Neurosci; 2024; 8(2):395-417. PubMed ID: 38952809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Alzheimer's Pathology on Task-Related Brain Network Reconfiguration in Aging.
    Cassady KE; Chen X; Adams JN; Harrison TM; Zhuang K; Maass A; Baker S; Jagust W
    J Neurosci; 2023 Sep; 43(38):6553-6563. PubMed ID: 37604690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
    Grady C; Sarraf S; Saverino C; Campbell K
    Neurobiol Aging; 2016 May; 41():159-172. PubMed ID: 27103529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration.
    Schultz DH; Cole MW
    J Neurosci; 2016 Aug; 36(33):8551-61. PubMed ID: 27535904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in resting-state and task-based network characteristics and cognition: a lifespan sample.
    Zhang H; Gertel VH; Cosgrove AL; Diaz MT
    Neurobiol Aging; 2021 May; 101():262-272. PubMed ID: 33602583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
    Chan MY; Alhazmi FH; Park DC; Savalia NK; Wig GS
    J Neurosci; 2017 Mar; 37(10):2734-2745. PubMed ID: 28174333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core networks and their reconfiguration patterns across cognitive loads.
    Zuo N; Yang Z; Liu Y; Li J; Jiang T
    Hum Brain Mapp; 2018 Sep; 39(9):3546-3557. PubMed ID: 29676536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.
    Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT
    Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states.
    Hughes C; Faskowitz J; Cassidy BS; Sporns O; Krendl AC
    Neuroimage; 2020 Apr; 209():116521. PubMed ID: 31926282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.
    Tsvetanov KA; Henson RN; Tyler LK; Razi A; Geerligs L; Ham TE; Rowe JB;
    J Neurosci; 2016 Mar; 36(11):3115-26. PubMed ID: 26985024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest.
    Spreng RN; Stevens WD; Viviano JD; Schacter DL
    Neurobiol Aging; 2016 Sep; 45():149-160. PubMed ID: 27459935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible connectivity in the aging brain revealed by task modulations.
    Geerligs L; Saliasi E; Renken RJ; Maurits NM; Lorist MM
    Hum Brain Mapp; 2014 Aug; 35(8):3788-804. PubMed ID: 24382835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age differences in predicting working memory performance from network-based functional connectivity.
    Pläschke RN; Patil KR; Cieslik EC; Nostro AD; Varikuti DP; Plachti A; Lösche P; Hoffstaedter F; Kalenscher T; Langner R; Eickhoff SB
    Cortex; 2020 Nov; 132():441-459. PubMed ID: 33065515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age differences in functional network reconfiguration with working memory training.
    Iordan AD; Moored KD; Katz B; Cooke KA; Buschkuehl M; Jaeggi SM; Polk TA; Peltier SJ; Jonides J; Reuter-Lorenz PA
    Hum Brain Mapp; 2021 Apr; 42(6):1888-1909. PubMed ID: 33534925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval.
    Deng L; Stanley ML; Monge ZA; Wing EA; Geib BR; Davis SW; Cabeza R
    Cereb Cortex; 2021 Jan; 31(2):717-730. PubMed ID: 32710101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of neural flexibility in cognitive aging.
    Varangis E; Qi W; Stern Y; Lee S
    Neuroimage; 2022 Feb; 247():118784. PubMed ID: 34902547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-evoked reconfiguration of the fronto-parietal network is associated with cognitive performance in brain tumor patients.
    De Baene W; Jansma MJ; Schouwenaars IT; Rutten GM; Sitskoorn MM
    Brain Imaging Behav; 2020 Dec; 14(6):2351-2366. PubMed ID: 31456158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.