These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38952958)

  • 1. Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation.
    Chhikara A; Wu F; Kaur N; Baskaran P; Nguyen AM; Yin Z; Pham AH; Li W
    Beilstein J Org Chem; 2024; 20():1405-1411. PubMed ID: 38952958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Hypervalent Iodine Catalysis Enables an Unusual Regiodivergent Intermolecular Olefin Aminooxygenation.
    Wu F; Kaur N; Alom NE; Li W
    JACS Au; 2021 Jun; 1(6):734-741. PubMed ID: 34240078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions.
    Shetgaonkar SE; Singh FV
    Front Chem; 2020; 8():705. PubMed ID: 33134246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantio- and Regioselective Palladium(II)-Catalyzed Dioxygenation of (Aza-)Alkenols.
    Giofrè S; Molteni L; Nava D; Lo Presti L; Beccalli EM
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21723-21727. PubMed ID: 34387928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents.
    Shetgaonkar SE; Mamgain R; Kikushima K; Dohi T; Singh FV
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regioselective Formal [3+2] Cycloadditions of Urea Substrates with Activated and Unactivated Olefins for Intermolecular Olefin Aminooxygenation.
    Wu F; Alom NE; Ariyarathna JP; Naß J; Li W
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11676-11680. PubMed ID: 31211504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mechanochemical, Catalyst-Free Cascade Synthesis of 1,3-Diols and 1,4-Iodoalcohols Using Styrenes and Hypervalent Iodine Reagents.
    Pan L; Zheng L; Chen Y; Ke Z; Yeung YY
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202207926. PubMed ID: 35829718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes.
    Li X; Chen P; Liu G
    Beilstein J Org Chem; 2018; 14():1813-1825. PubMed ID: 30112085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents.
    Shetgaonkar SE; Raju A; China H; Takenaga N; Dohi T; Singh FV
    Front Chem; 2022; 10():909250. PubMed ID: 35844643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition.
    Liu RY; Buchwald SL
    Acc Chem Res; 2020 Jun; 53(6):1229-1243. PubMed ID: 32401530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies.
    Wang Y; He Y; Zhu S
    Acc Chem Res; 2022 Dec; 55(23):3519-3536. PubMed ID: 36350093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species.
    Elsherbini M; Moran WJ
    J Org Chem; 2023 Feb; 88(3):1424-1433. PubMed ID: 36689352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypervalent iodine: a powerful electrophile for asymmetric α-functionalization of carbonyl compounds.
    Dong DQ; Hao SH; Wang ZL; Chen C
    Org Biomol Chem; 2014 Jul; 12(25):4278-89. PubMed ID: 24827449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions.
    Singh FV; Wirth T
    Chem Asian J; 2014 Apr; 9(4):950-71. PubMed ID: 24523252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Direct/Stepwise Dearomatization Reactions Involving Hypervalent Iodine Reagents.
    Kumar R; Singh FV; Takenaga N; Dohi T
    Chem Asian J; 2022 Feb; 17(4):e202101115. PubMed ID: 34817125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. μ-Oxo-Hypervalent-Iodine-Catalyzed Oxidative C-H Amination for Synthesis of Benzolactam Derivatives.
    Sasa H; Mori K; Kikushima K; Kita Y; Dohi T
    Chem Pharm Bull (Tokyo); 2022 Feb; 70(2):106-110. PubMed ID: 34897163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Selective C-H Deprotonation Strategy to Access Functionalized Arynes by Using Hypervalent Iodine.
    Sundalam SK; Nilova A; Seidl TL; Stuart DR
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8431-4. PubMed ID: 27239971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins.
    Zhang Z; Chen Y; Gu X; Ho CY
    Acc Chem Res; 2023 May; 56(9):1070-1086. PubMed ID: 37036948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.