These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38952960)

  • 1. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model.
    Shao Y; Ren Z; Han Z; Chen L; Li Y; Xue XS
    Beilstein J Org Chem; 2024; 20():1444-1452. PubMed ID: 38952960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry and Reactivity of Chelation-stabilized Hypervalent Bromine(III) Compounds.
    Mohebbati N; Sokolovs I; Woite P; Lõkov M; Parman E; Ugandi M; Leito I; Roemelt M; Suna E; Francke R
    Chemistry; 2022 Jul; 28(42):e202200974. PubMed ID: 35510557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES.
    Nakajima M; Nemoto T
    Sci Rep; 2021 Oct; 11(1):20207. PubMed ID: 34642360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halogen bond involving hypervalent halogen: CSD search and theoretical study.
    Wang W
    J Phys Chem A; 2011 Aug; 115(33):9294-9. PubMed ID: 21770446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
    St John PC; Guan Y; Kim Y; Kim S; Paton RS
    Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.
    Feng Y; Liu L; Wang JT; Huang H; Guo QX
    J Chem Inf Comput Sci; 2003; 43(6):2005-13. PubMed ID: 14632451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents.
    Le Du E; Duhail T; Wodrich MD; Scopelliti R; Fadaei-Tirani F; Anselmi E; Magnier E; Waser J
    Chemistry; 2021 Jul; 27(42):10979-10986. PubMed ID: 33978974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic aromatic systems with hypervalent centers.
    Minkin VI; Minyaev RM
    Chem Rev; 2001 May; 101(5):1247-65. PubMed ID: 11710220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the C4-H bond dissociation energies of NADH models and their radical cations in acetonitrile.
    Zhu XQ; Li HR; Li Q; Ai T; Lu JY; Yang Y; Cheng JP
    Chemistry; 2003 Feb; 9(4):871-80. PubMed ID: 12584702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halogen bonding in hypervalent iodine and bromine derivatives: halonium salts.
    Cavallo G; Murray JS; Politzer P; Pilati T; Ursini M; Resnati G
    IUCrJ; 2017 Jul; 4(Pt 4):411-419. PubMed ID: 28875028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors.
    Heinen F; Engelage E; Cramer CJ; Huber SM
    J Am Chem Soc; 2020 May; 142(19):8633-8640. PubMed ID: 32286829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bond Strength and Interaction Energies in Togni Reagents: Insights from Molecular Electrostatic Potential-Based Parameters.
    Lohithakshamenon R; Prasanthkumar KP; Femina C; Sajith PK
    J Phys Chem A; 2024 Feb; 128(4):727-737. PubMed ID: 38253016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypervalent Iodine (III)-Based Complexation for Chiroptical Supramolecular Glass, Deep Eutectic Solvent and Luminescent Switch.
    An S; Hao A; Xing P
    Adv Mater; 2024 Jul; ():e2402314. PubMed ID: 39014909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical approaches to estimating homolytic bond dissociation energies of organocopper and organosilver compounds.
    Rijs NJ; Brookes NJ; O'Hair RA; Yates BF
    J Phys Chem A; 2012 Sep; 116(35):8910-7. PubMed ID: 22924458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents.
    Shetgaonkar SE; Mamgain R; Kikushima K; Dohi T; Singh FV
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions.
    Shetgaonkar SE; Singh FV
    Front Chem; 2020; 8():705. PubMed ID: 33134246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.