These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38952993)

  • 21. An Open-Source Photogrammetry Workflow for Reconstructing 3D Models.
    Zhang C; Maga AM
    Integr Org Biol; 2023; 5(1):obad024. PubMed ID: 37465202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [3D display of sequential 2D medical images].
    Lu Y; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):724-7. PubMed ID: 14716887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning method of stochastic reconstruction of three-dimensional digital cores from a two-dimensional image.
    Li J; Teng Q; Zhang N; Chen H; He X
    Phys Rev E; 2023 May; 107(5-2):055309. PubMed ID: 37329045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study.
    Lloyd DFA; Pushparajah K; Simpson JM; van Amerom JFP; van Poppel MPM; Schulz A; Kainz B; Deprez M; Lohezic M; Allsop J; Mathur S; Bellsham-Revell H; Vigneswaran T; Charakida M; Miller O; Zidere V; Sharland G; Rutherford M; Hajnal JV; Razavi R
    Lancet; 2019 Apr; 393(10181):1619-1627. PubMed ID: 30910324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging and analysis of a three-dimensional spider web architecture.
    Su I; Qin Z; Saraceno T; Krell A; Mühlethaler R; Bisshop A; Buehler MJ
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30232240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain.
    Young DM; Fazel Darbandi S; Schwartz G; Bonzell Z; Yuruk D; Nojima M; Gole LC; Rubenstein JL; Yu W; Sanders SJ
    Elife; 2021 Feb; 10():. PubMed ID: 33570495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quanti.us: a tool for rapid, flexible, crowd-based annotation of images.
    Hughes AJ; Mornin JD; Biswas SK; Beck LE; Bauer DP; Raj A; Bianco S; Gartner ZJ
    Nat Methods; 2018 Aug; 15(8):587-590. PubMed ID: 30065368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38479004
    [No Abstract]   [Full Text] [Related]  

  • 29. A fully-annotated imagery dataset of sublittoral benthic species in Svalbard, Arctic.
    Šiaulys A; Vaičiukynas E; Medelytė S; Olenin S; Šaškov A; Buškus K; Verikas A
    Data Brief; 2021 Apr; 35():106823. PubMed ID: 33604435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time three-dimensional ultrasound for guiding surgical tasks.
    Cannon JW; Stoll JA; Salgo IS; Knowles HB; Howe RD; Dupont PE; Marx GR; del Nido PJ
    Comput Aided Surg; 2003; 8(2):82-90. PubMed ID: 15015721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intensity-based 2D-3D spine image registration incorporating a single fiducial marker.
    Russakoff DB; Rohlfing T; Adler JR; Maurer CR
    Acad Radiol; 2005 Jan; 12(1):37-50. PubMed ID: 15691724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-supervised learning for accelerated 3D high-resolution ultrasound imaging.
    Dai X; Lei Y; Wang T; Axente M; Xu D; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jul; 48(7):3916-3926. PubMed ID: 33993508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking.
    Yang L; Georgescu B; Zheng Y; Wang Y; Meer P; Comaniciu D
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1921-32. PubMed ID: 21642040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Terabyte-scale supervised 3D training and benchmarking dataset of the mouse kidney.
    Kuo W; Rossinelli D; Schulz G; Wenger RH; Hieber S; Müller B; Kurtcuoglu V
    Sci Data; 2023 Aug; 10(1):510. PubMed ID: 37537174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.
    de Jesus K; de Jesus K; Figueiredo P; Vilas-Boas JP; Fernandes RJ; Machado LJ
    Comput Math Methods Med; 2015; 2015():269264. PubMed ID: 26175796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
    Bitarafan A; Nikdan M; Baghshah MS
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2665-2672. PubMed ID: 33211667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs.
    Slagmolen P; Hermans J; Maes F; Budiharto T; Haustermans K; van den Heuvel F
    Med Phys; 2010 Apr; 37(4):1554-64. PubMed ID: 20443476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.