These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38953517)

  • 1. Hippocampus and striatum show distinct contributions to longitudinal changes in value-based learning in middle childhood.
    Falck J; Zhang L; Raffington L; Mohn JJ; Triesch J; Heim C; Shing YL
    Elife; 2024 Jul; 12():. PubMed ID: 38953517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback-Based Learning in Aging: Contributions and Trajectories of Change in Striatal and Hippocampal Systems.
    Lighthall NR; Pearson JM; Huettel SA; Cabeza R
    J Neurosci; 2018 Sep; 38(39):8453-8462. PubMed ID: 30120208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback timing modulates brain systems for learning in humans.
    Foerde K; Shohamy D
    J Neurosci; 2011 Sep; 31(37):13157-67. PubMed ID: 21917799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociating striatal and hippocampal function developmentally with a stimulus-response compatibility task.
    Casey BJ; Thomas KM; Davidson MC; Kunz K; Franzen PL
    J Neurosci; 2002 Oct; 22(19):8647-52. PubMed ID: 12351738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes.
    Patt VM; Palombo DJ; Esterman M; Verfaellie M
    J Cogn Neurosci; 2022 Jul; 34(8):1429-1446. PubMed ID: 35604353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural and psychological maturation of decision-making in adolescence and young adulthood.
    Christakou A; Gershman SJ; Niv Y; Simmons A; Brammer M; Rubia K
    J Cogn Neurosci; 2013 Nov; 25(11):1807-23. PubMed ID: 23859647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating memory efficacy affects the behavioral and neural profiles of deterministic learning and decision-making.
    Tremel JJ; Ortiz DM; Fiez JA
    Neuropsychologia; 2018 Jun; 114():214-230. PubMed ID: 29705066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general model of hippocampal and dorsal striatal learning and decision making.
    Geerts JP; Chersi F; Stachenfeld KL; Burgess N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31427-31437. PubMed ID: 33229541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A trade-off between feedback-based learning and episodic memory for feedback events: evidence from Parkinson's disease.
    Foerde K; Braun EK; Shohamy D
    Neurodegener Dis; 2013; 11(2):93-101. PubMed ID: 23036965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociating hippocampal and striatal contributions to sequential prediction learning.
    Bornstein AM; Daw ND
    Eur J Neurosci; 2012 Apr; 35(7):1011-23. PubMed ID: 22487032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of associative learning in the hippocampal-striatal circuit based on item-set similarity.
    Stark SM; Frithsen A; Mattfeld AT; Stark CEL
    Cortex; 2018 Dec; 109():60-73. PubMed ID: 30300757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatal prediction errors support dynamic control of declarative memory decisions.
    Scimeca JM; Katzman PL; Badre D
    Nat Commun; 2016 Oct; 7():13061. PubMed ID: 27713407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delaying feedback compensates for impaired reinforcement learning in developmental dyslexia.
    Gabay Y
    Neurobiol Learn Mem; 2021 Nov; 185():107518. PubMed ID: 34508883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory-Guided Attention: Independent Contributions of the Hippocampus and Striatum.
    Goldfarb EV; Chun MM; Phelps EA
    Neuron; 2016 Jan; 89(2):317-24. PubMed ID: 26777274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence.
    Davidow JY; Foerde K; Galván A; Shohamy D
    Neuron; 2016 Oct; 92(1):93-99. PubMed ID: 27710793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
    Ferbinteanu J
    J Neurosci; 2016 Jun; 36(24):6459-70. PubMed ID: 27307234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.