These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38953643)

  • 1. Lipidomics of homeoviscous adaptation to low temperatures in
    Barbarek SC; Shah R; Paul S; Alvarado G; Appala K; Phillips C; Henderson EC; Strandquist ET; Pokorny A; Singh VK; Gatto C; Dahl J-U; Hines KM; Wilkinson BJ
    J Bacteriol; 2024 Jul; 206(7):e0018724. PubMed ID: 38953643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipidomics of homeoviscous adaptation to low temperatures in
    Barbarek SC; Shah R; Paul S; Alvarado G; Appala K; Henderson EC; Strandquist ET; Pokorny A; Singh VK; Gatto C; Dahl JU; Hines KM; Wilkinson BJ
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the
    Tiwari KB; Gatto C; Wilkinson BJ
    Molecules; 2018 May; 23(5):. PubMed ID: 29772798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.
    Sen S; Sirobhushanam S; Johnson SR; Song Y; Tefft R; Gatto C; Wilkinson BJ
    PLoS One; 2016; 11(10):e0165300. PubMed ID: 27788193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipidomic and Ultrastructural Characterization of the Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum.
    Hines KM; Alvarado G; Chen X; Gatto C; Pokorny A; Alonzo F; Wilkinson BJ; Xu L
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554713
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus.
    Parsons JB; Yao J; Frank MW; Jackson P; Rock CO
    J Bacteriol; 2012 Oct; 194(19):5294-304. PubMed ID: 22843840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Deficiencies in Branched-Chain Fatty Acids and Staphyloxanthin in
    Braungardt H; Singh VK
    Biomed Res Int; 2019; 2019():2603435. PubMed ID: 30805362
    [No Abstract]   [Full Text] [Related]  

  • 8. Exogenous Fatty Acids Remodel Staphylococcus aureus Lipid Composition through Fatty Acid Kinase.
    DeMars Z; Singh VK; Bose JL
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366591
    [No Abstract]   [Full Text] [Related]  

  • 9. Defective
    Freeman CD; Hansen T; Urbauer R; Wilkinson BJ; Singh VK; Hines KM
    mSphere; 2024 Jun; 9(6):e0011524. PubMed ID: 38752757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site.
    Frank MW; Yao J; Batte JL; Gullett JM; Subramanian C; Rosch JW; Rock CO
    mBio; 2020 May; 11(3):. PubMed ID: 32430471
    [No Abstract]   [Full Text] [Related]  

  • 11. Roles of pyruvate dehydrogenase and branched-chain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus.
    Singh VK; Sirobhushanam S; Ring RP; Singh S; Gatto C; Wilkinson BJ
    J Med Microbiol; 2018 Apr; 67(4):570-578. PubMed ID: 29498620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertional inactivation of branched-chain alpha-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses.
    Singh VK; Hattangady DS; Giotis ES; Singh AK; Chamberlain NR; Stuart MK; Wilkinson BJ
    Appl Environ Microbiol; 2008 Oct; 74(19):5882-90. PubMed ID: 18689519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of the exogenous fatty acid utilization pathway leads to increased resistance to unsaturated fatty acids in Staphylococcus aureus.
    Krute CN; Ridder MJ; Seawell NA; Bose JL
    Microbiology (Reading); 2019 Feb; 165(2):197-207. PubMed ID: 30566075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures.
    Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ
    Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene identification and functional characterization of a Δ12 fatty acid desaturase in Tetrahymena thermophila and its influence in homeoviscous adaptation to low temperature.
    Sanchez Granel ML; Cánepa C; Cid NG; Navarro JC; Monroig Ó; Verstraeten SV; Nudel CB; Nusblat AD
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Nov; 1864(11):1644-1655. PubMed ID: 31421180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.
    Sen S; Sirobhushanam S; Hantak MP; Lawrence P; Brenna JT; Gatto C; Wilkinson BJ
    Biochim Biophys Acta; 2015 Oct; 1851(10):1406-15. PubMed ID: 26225744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold.
    Brankatschk M; Gutmann T; Knittelfelder O; Palladini A; Prince E; Grzybek M; Brankatschk B; Shevchenko A; Coskun Ü; Eaton S
    Dev Cell; 2018 Sep; 46(6):781-793.e4. PubMed ID: 30253170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched chain fatty acid synthesis drives tissue-specific innate immune response and  infection dynamics of  Staphylococcus aureus.
    Chen X; Teoh WP; Stock MR; Resko ZJ; Alonzo F
    PLoS Pathog; 2021 Sep; 17(9):e1009930. PubMed ID: 34496007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the Impact of Bacterial Lipases, Human Serum Albumin, and FASII Inhibition on the Utilization of Exogenous Fatty Acids by
    Pruitt EL; Zhang R; Ross DH; Ashford NK; Chen X; Alonzo F; Bush MF; Werth BJ; Xu L
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425828
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids.
    Lee JH; Kim YG; Lee J
    Microbiol Spectr; 2022 Jun; 10(3):e0133022. PubMed ID: 35647620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.