These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38954247)

  • 21. Nanopore adaptive sampling for targeted mitochondrial genome sequencing and bloodmeal identification in hematophagous insects.
    Kipp EJ; Lindsey LL; Milstein MS; Blanco CM; Baker JP; Faulk C; Oliver JD; Larsen PA
    Parasit Vectors; 2023 Feb; 16(1):68. PubMed ID: 36788607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae.
    Emami SN; Ranford-Cartwright LC; Ferguson HM
    Malar J; 2013 Feb; 12():45. PubMed ID: 23374331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges.
    Coutinho-Abreu IV; Zhu KY; Ramalho-Ortigao M
    Parasitol Int; 2010 Mar; 59(1):1-8. PubMed ID: 19819346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence.
    Deng J; Guo Y; Su X; Liu S; Yang W; Wu Y; Wu K; Yan G; Chen XG
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009391. PubMed ID: 33905415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmission blocking vaccines to control insect-borne diseases: a review.
    Coutinho-Abreu IV; Ramalho-Ortigao M
    Mem Inst Oswaldo Cruz; 2010 Feb; 105(1):1-12. PubMed ID: 20209323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of insecticide-resistance on control of vectors and vector-borne diseases.
    Busvine JR; Pal R
    Bull World Health Organ; 1969; 40(5):731-44. PubMed ID: 5307234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNA-277 targets
    Ling L; Kokoza VA; Zhang C; Aksoy E; Raikhel AS
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E8017-E8024. PubMed ID: 28874536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases.
    Zumaya-Estrada FA; Rodríguez MC; Rodríguez MH
    Salud Publica Mex; 2018; 60(1):77-85. PubMed ID: 29689660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silencing of ATG6 and ATG8 promotes increased levels of triacylglycerol (TAG) in the fat body during prolonged starvation periods in the Chagas disease vector Rhodnius prolixus.
    Santos-Araujo S; Bomfim L; Araripe LO; Bruno R; Ramos I; Gondim KC
    Insect Biochem Mol Biol; 2020 Dec; 127():103484. PubMed ID: 33022370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deficiency of Brummer lipase disturbs lipid mobilization and locomotion, and impairs reproduction due to defects in the eggshell ultrastructure in the insect vector Rhodnius prolixus.
    Arêdes DS; Rios T; Carvalho-Kelly LF; Braz V; Araripe LO; Bruno RV; Meyer-Fernandes JR; Ramos I; Gondim KC
    Biochim Biophys Acta Mol Cell Biol Lipids; 2024 Mar; 1869(2):159442. PubMed ID: 38042331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood meal digestion and changes in lipid reserves are associated with the post-ecdysis development of the flight muscle and ovary in young adults of Rhodnius prolixus.
    Braz V; Selim L; Gomes G; Costa ML; Mermelstein C; Gondim KC
    J Insect Physiol; 2023 Apr; 146():104492. PubMed ID: 36801397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review.
    Shrestha B; Lee Y
    Genes Genomics; 2020 Oct; 42(10):1131-1144. PubMed ID: 32889681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactome: Smart hematophagous triatomine salivary gland molecules counteract human hemostasis during meal acquisition.
    de Araújo CN; Bussacos AC; Sousa AO; Hecht MM; Teixeira AR
    J Proteomics; 2012 Jul; 75(13):3829-41. PubMed ID: 22579750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Western diet consumption by host vertebrate promotes altered gene expression on Aedes aegypti reducing its lifespan and increasing fertility following blood feeding.
    Menezes A; Peixoto M; Silva M; Costa-Bartuli E; Oliveira CL; Walter-Nuno AB; Kistenmacker NDC; Pereira J; Ramos I; Paiva-Silva GO; Atella GC; Zancan P; Sola-Penna M; Gomes FM
    Parasit Vectors; 2024 Jan; 17(1):12. PubMed ID: 38184590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution.
    de Angeli Dutra D; Poulin R; Ferreira FC
    Parasitology; 2022 Nov; 149(13):1667-1678. PubMed ID: 36200511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Looking Through the Lens of 'Omics Technologies: Insights Into the Transmission of Insect Vector-borne Plant Viruses.
    Wilson JR; DeBlasio SL; Alexander MM; Heck M
    Curr Issues Mol Biol; 2020; 34():113-144. PubMed ID: 31167958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation of medically important insect vectors by their parasites.
    Hurd H
    Annu Rev Entomol; 2003; 48():141-61. PubMed ID: 12414739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence.
    Fouque F; Reeder JC
    Infect Dis Poverty; 2019 Jun; 8(1):51. PubMed ID: 31196187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid uptake by insect oocytes.
    Ziegler R; Van Antwerpen R
    Insect Biochem Mol Biol; 2006 Apr; 36(4):264-72. PubMed ID: 16551540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.