These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38954490)

  • 1. Non-native Pathway Engineering with CRISPRi for Carbon Dioxide Assimilation and Valued 5-Aminolevulinic Acid Synthesis in
    Effendi SSW; Ng IS
    ACS Synth Biol; 2024 Jul; 13(7):2038-2044. PubMed ID: 38954490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110.
    Ting WW; Ng IS
    Biotechnol Bioeng; 2023 Feb; 120(2):583-592. PubMed ID: 36302745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production.
    Zhang Y; Sun T; Liu L; Cao X; Zhang W; Wang W; Li C
    Metab Eng; 2024 May; 83():150-159. PubMed ID: 38621518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering synergetic CO
    Hu G; Zhou J; Chen X; Qian Y; Gao C; Guo L; Xu P; Chen W; Chen J; Li Y; Liu L
    Metab Eng; 2018 May; 47():496-504. PubMed ID: 29753840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling.
    Zhuang ZY; Li SY
    Bioresour Technol; 2013 Dec; 150():79-88. PubMed ID: 24152790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved
    Wilson RH; Martin-Avila E; Conlan C; Whitney SM
    J Biol Chem; 2018 Jan; 293(1):18-27. PubMed ID: 28986448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.
    Yang CH; Liu EJ; Chen YL; Ou-Yang FY; Li SY
    Microb Cell Fact; 2016 Aug; 15(1):133. PubMed ID: 27485110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation.
    Li YH; Ou-Yang FY; Yang CH; Li SY
    Bioresour Technol; 2015; 187():189-197. PubMed ID: 25846189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z; Wang Y; Wang Q; Qi Q
    Bioeng Bugs; 2011; 2(6):342-5. PubMed ID: 22008939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters.
    Wang W; Xiang Y; Yin G; Hu S; Cheng J; Chen J; Du G; Kang Z; Wang Y
    J Agric Food Chem; 2024 Apr; 72(14):8006-8017. PubMed ID: 38554273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a probiotic strain of Escherichia coli to induce the regression of colorectal cancer through production of 5-aminolevulinic acid.
    Chen J; Li X; Liu Y; Su T; Lin C; Shao L; Li L; Li W; Niu G; Yu J; Liu L; Li M; Yu X; Wang Q
    Microb Biotechnol; 2021 Sep; 14(5):2130-2139. PubMed ID: 34272828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional reconstitution of a bacterial CO
    Flamholz AI; Dugan E; Blikstad C; Gleizer S; Ben-Nissan R; Amram S; Antonovsky N; Ravishankar S; Noor E; Bar-Even A; Milo R; Savage DF
    Elife; 2020 Oct; 9():. PubMed ID: 33084575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.