These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38954504)

  • 1. Investigating Shear Stress of Ice Accumulated on Surfaces with Various Roughnesses: Effects of a Quasi-Water Layer.
    Cui X; Yang C; Sun Q; Zhang W; Wang X
    Langmuir; 2024 Jul; 40(28):14214-14223. PubMed ID: 38954504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-water layer sandwiched between hexagonal ice and wall and its influences on the ice tensile stress.
    Sun Q; Xiao D; Zhang W; Mao X
    Nanoscale; 2022 Sep; 14(36):13324-13333. PubMed ID: 36065833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of anti-icing properties degradation for slippery liquid-infused porous surfaces under shear stresses.
    Boinovich LB; Chulkova EV; Emelyanenko KA; Domantovsky AG; Emelyanenko AM
    J Colloid Interface Sci; 2022 Mar; 609():260-268. PubMed ID: 34896827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Nature of Heterogeneous Electrofreezing of Supercooled Water Revealed on Polar (Pyroelectric) Surfaces.
    Javitt LF; Curland S; Weissbuch I; Ehre D; Lahav M; Lubomirsky I
    Acc Chem Res; 2022 May; 55(10):1383-1394. PubMed ID: 35504292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale deicing by molecular dynamics simulation.
    Xiao S; He J; Zhang Z
    Nanoscale; 2016 Aug; 8(30):14625-32. PubMed ID: 27431975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust and Superhydrophobic Polydimethylsiloxane/Ni@Ti
    Chen J; Chen X; Hao Z; Wu Z; Selim MS; Yu J; Huang Y
    ACS Appl Mater Interfaces; 2024 May; 16(20):26713-26732. PubMed ID: 38723291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic Solid Photothermal Slippery Surfaces with Rapid Self-repairing, Dual Anti-icing/Deicing, and Excellent Stability Based on Paraffin and Etching.
    Wei J; Yang S; Xiao X; Wang J
    Langmuir; 2024 Apr; 40(14):7747-7759. PubMed ID: 38526417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Icephobic/anti-icing properties of superhydrophobic surfaces.
    Huang W; Huang J; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.
    Stamatopoulos C; Hemrle J; Wang D; Poulikakos D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10233-10242. PubMed ID: 28230349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces.
    Yang Q; Zhu Z; Tan S; Luo Y; Luo Z
    Langmuir; 2020 Apr; 36(15):4005-4014. PubMed ID: 32233373
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Xuan S; Yin H; Li G; Zhang Z; Jiao Y; Liao Z; Li J; Liu S; Wang Y; Tang C; Wu W; Li G; Yin K
    ACS Nano; 2023 Nov; 17(21):21749-21760. PubMed ID: 37843015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Anti-Icing Surfaces Based on Dual Functionality─Microstructurally-Induced Ice Shedding with Superimposed Nanostructurally-Enhanced Water Shedding.
    Wood MJ; Brock G; Debray J; Servio P; Kietzig AM
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47310-47321. PubMed ID: 36194885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive Removal of Highly Wetting Liquids and Ice on Quasi-Liquid Surfaces.
    Zhang L; Guo Z; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20084-20095. PubMed ID: 32255601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic versus SLIPS: Temperature dependence and the stability of ice adhesion strength.
    Boinovich LB; Emelyanenko KA; Emelyanenko AM
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):556-566. PubMed ID: 34416451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-icing performance of hydrophobic coatings on stainless steel surfaces.
    Wang H; Cao P; Xu S; Cui G; Chen Z; Yin Q
    Heliyon; 2024 Jun; 10(11):e32319. PubMed ID: 38912511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.
    Ozbay S; Yuceel C; Erbil HY
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the quasi-liquid layer on ice surfaces: a comparison of order parameters.
    Shi J; Fulford M; Li H; Marzook M; Reisjalali M; Salvalaglio M; Molteni C
    Phys Chem Chem Phys; 2022 May; 24(20):12476-12487. PubMed ID: 35576067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.