These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38954790)
1. Drug Evaluation of Parkinson's Disease Patient-Derived Midbrain Organoids Using Mesoporous Au Nanodot-Patterned 3D Concave Electrode. An J; Shin M; Beak G; Yoon J; Kim S; Cho HY; Choi JW ACS Sens; 2024 Jul; 9(7):3573-3580. PubMed ID: 38954790 [TBL] [Abstract][Full Text] [Related]
2. Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson's disease modelling and drug screening. Zanetti C; Spitz S; Berger E; Bolognin S; Smits LM; Crepaz P; Rothbauer M; Rosser JM; Marchetti-Deschmann M; Schwamborn JC; Ertl P Analyst; 2021 Apr; 146(7):2358-2367. PubMed ID: 33625407 [TBL] [Abstract][Full Text] [Related]
3. Tilorone mitigates the propagation of α-synucleinopathy in a midbrain-like organoid model. Zhang Q; Liu M; Xu Y; Lee J; Jones B; Li B; Huang W; Ye Y; Zheng W J Transl Med; 2024 Sep; 22(1):816. PubMed ID: 39223664 [TBL] [Abstract][Full Text] [Related]
4. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Kim SW; Woo HJ; Kim EH; Kim HS; Suh HN; Kim SH; Song JJ; Wulansari N; Kang M; Choi SY; Choi SJ; Jang WH; Lee J; Kim KH; Lee W; Kim SH; Yang J; Kyung J; Lee HS; Park SM; Chang MY; Lee SH Prog Neurobiol; 2021 Sep; 204():102086. PubMed ID: 34052305 [TBL] [Abstract][Full Text] [Related]
5. Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Ji D; Xu N; Liu Z; Shi Z; Low SS; Liu J; Cheng C; Zhu J; Zhang T; Xu H; Yu X; Liu Q Biosens Bioelectron; 2019 Mar; 129():216-223. PubMed ID: 30297172 [TBL] [Abstract][Full Text] [Related]
6. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM Elife; 2020 Nov; 9():. PubMed ID: 33138918 [TBL] [Abstract][Full Text] [Related]
7. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease. Chlebanowska P; Tejchman A; Sułkowski M; Skrzypek K; Majka M Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973095 [TBL] [Abstract][Full Text] [Related]
8. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Yeap YJ; Teddy TJW; Lee MJ; Goh M; Lim KL Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768843 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical sensor to detect neurotransmitter using gold nano-island coated ITO electrode. El-Said WA; Lee JH; Oh BK; Choi JW J Nanosci Nanotechnol; 2011 Jul; 11(7):6539-43. PubMed ID: 22121752 [TBL] [Abstract][Full Text] [Related]
11. Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. Mahshid S; Li C; Mahshid SS; Askari M; Dolati A; Yang L; Luo S; Cai Q Analyst; 2011 Jun; 136(11):2322-9. PubMed ID: 21494708 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Yue HY; Zhang HJ; Huang S; Lu XX; Gao X; Song SS; Wang Z; Wang WQ; Guan EH Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110490. PubMed ID: 31923936 [TBL] [Abstract][Full Text] [Related]
13. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Kim MS; Kim H; Lee G Adv Healthc Mater; 2024 Aug; 13(21):e2303041. PubMed ID: 38269602 [TBL] [Abstract][Full Text] [Related]
14. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Nickels SL; Modamio J; Mendes-Pinheiro B; Monzel AS; Betsou F; Schwamborn JC Stem Cell Res; 2020 Jul; 46():101870. PubMed ID: 32534166 [TBL] [Abstract][Full Text] [Related]
15. Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Smits LM; Schwamborn JC Front Cell Dev Biol; 2020; 8():359. PubMed ID: 32509785 [TBL] [Abstract][Full Text] [Related]
16. Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells. Sozzi E; Nilsson F; Kajtez J; Parmar M; Fiorenzano A Curr Protoc; 2022 Sep; 2(9):e555. PubMed ID: 36121202 [TBL] [Abstract][Full Text] [Related]
18. Combining Automated Organoid Workflows with Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond. Renner H; Schöler HR; Bruder JM Mov Disord; 2021 Dec; 36(12):2745-2762. PubMed ID: 34498298 [TBL] [Abstract][Full Text] [Related]
19. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. Tejchman A; Znój A; Chlebanowska P; Frączek-Szczypta A; Majka M Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825046 [TBL] [Abstract][Full Text] [Related]
20. Protocol for transplantation of cells derived from human midbrain organoids into a Parkinson's disease mouse model to restore motor function. Fu CL; Jiang X; Dong BC; Li D; She XY; Yao J STAR Protoc; 2024 Sep; 5(3):103251. PubMed ID: 39120976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]