These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 38955096)
1. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Martínez-Magaña JJ; Hurtado-Soriano J; Rivero-Segura NA; Montalvo-Ortiz JL; Garcia-delaTorre P; Becerril-Rojas K; Gomez-Verjan JC Arch Med Res; 2024 Jul; 55(5):103033. PubMed ID: 38955096 [TBL] [Abstract][Full Text] [Related]
2. Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging. Porter HL; Brown CA; Roopnarinesingh X; Giles CB; Georgescu C; Freeman WM; Wren JD Aging Cell; 2021 Nov; 20(11):e13492. PubMed ID: 34655509 [TBL] [Abstract][Full Text] [Related]
3. Using Epigenetic Clocks to Characterize Biological Aging in Studies of Children and Childhood Exposures: a Systematic Review. Musci RJ; Raghunathan RS; Johnson SB; Klein L; Ladd-Acosta C; Ansah R; Hassoun R; Voegtline KM Prev Sci; 2023 Oct; 24(7):1398-1423. PubMed ID: 37477807 [TBL] [Abstract][Full Text] [Related]
4. NEOage clocks - epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants. Graw S; Camerota M; Carter BS; Helderman J; Hofheimer JA; McGowan EC; Neal CR; Pastyrnak SL; Smith LM; DellaGrotta SA; Dansereau LM; Padbury JF; O'Shea M; Lester BM; Marsit CJ; Everson TM Aging (Albany NY); 2021 Oct; 13(20):23527-23544. PubMed ID: 34655469 [TBL] [Abstract][Full Text] [Related]
5. Epigenetic clock: A promising biomarker and practical tool in aging. Duan R; Fu Q; Sun Y; Li Q Ageing Res Rev; 2022 Nov; 81():101743. PubMed ID: 36206857 [TBL] [Abstract][Full Text] [Related]
6. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Grodstein F; Lemos B; Yu L; Klein HU; Iatrou A; Buchman AS; Shireby GL; Mill J; Schneider JA; De Jager PL; Bennett DA Neurobiol Dis; 2021 Sep; 157():105428. PubMed ID: 34153464 [TBL] [Abstract][Full Text] [Related]
7. The influences of DNA methylation and epigenetic clocks, on metabolic disease, in middle-aged Koreans. Lee HS; Park T Clin Epigenetics; 2020 Oct; 12(1):148. PubMed ID: 33059731 [TBL] [Abstract][Full Text] [Related]
8. "Epigenetic clocks": Theory and applications in human biology. Ryan CP Am J Hum Biol; 2021 May; 33(3):e23488. PubMed ID: 32845048 [TBL] [Abstract][Full Text] [Related]
9. A systematic review of phenotypic and epigenetic clocks used for aging and mortality quantification in humans. Warner B; Ratner E; Datta A; Lendasse A Aging (Albany NY); 2024 Aug; 16(17):12414-12427. PubMed ID: 39215995 [TBL] [Abstract][Full Text] [Related]
10. DNA methylation clocks for dogs and humans. Horvath S; Lu AT; Haghani A; Zoller JA; Li CZ; Lim AR; Brooke RT; Raj K; Serres-Armero A; Dreger DL; Hogan AN; Plassais J; Ostrander EA Proc Natl Acad Sci U S A; 2022 May; 119(21):e2120887119. PubMed ID: 35580182 [TBL] [Abstract][Full Text] [Related]
11. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Wang T; Maden SK; Luebeck GE; Li CI; Newcomb PA; Ulrich CM; Joo JE; Buchanan DD; Milne RL; Southey MC; Carter KT; Willbanks AR; Luo Y; Yu M; Grady WM Clin Epigenetics; 2020 Jan; 12(1):5. PubMed ID: 31900199 [TBL] [Abstract][Full Text] [Related]
12. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Shireby GL; Davies JP; Francis PT; Burrage J; Walker EM; Neilson GWA; Dahir A; Thomas AJ; Love S; Smith RG; Lunnon K; Kumari M; Schalkwyk LC; Morgan K; Brookes K; Hannon E; Mill J Brain; 2020 Dec; 143(12):3763-3775. PubMed ID: 33300551 [TBL] [Abstract][Full Text] [Related]
13. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Martin-Herranz DE; Aref-Eshghi E; Bonder MJ; Stubbs TM; Choufani S; Weksberg R; Stegle O; Sadikovic B; Reik W; Thornton JM Genome Biol; 2019 Aug; 20(1):146. PubMed ID: 31409373 [TBL] [Abstract][Full Text] [Related]
14. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Oblak L; van der Zaag J; Higgins-Chen AT; Levine ME; Boks MP Ageing Res Rev; 2021 Aug; 69():101348. PubMed ID: 33930583 [TBL] [Abstract][Full Text] [Related]
15. Underlying features of epigenetic aging clocks in vivo and in vitro. Liu Z; Leung D; Thrush K; Zhao W; Ratliff S; Tanaka T; Schmitz LL; Smith JA; Ferrucci L; Levine ME Aging Cell; 2020 Oct; 19(10):e13229. PubMed ID: 32930491 [TBL] [Abstract][Full Text] [Related]
16. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Sillanpää E; Heikkinen A; Kankaanpää A; Paavilainen A; Kujala UM; Tammelin TH; Kovanen V; Sipilä S; Pietiläinen KH; Kaprio J; Ollikainen M; Laakkonen EK Clin Epigenetics; 2021 May; 13(1):110. PubMed ID: 34001218 [TBL] [Abstract][Full Text] [Related]
17. The role of adolescent lifestyle habits in biological aging: A prospective twin study. Kankaanpää A; Tolvanen A; Heikkinen A; Kaprio J; Ollikainen M; Sillanpää E Elife; 2022 Nov; 11():. PubMed ID: 36345722 [TBL] [Abstract][Full Text] [Related]
18. The use of DNA methylation clock in aging research. He X; Liu J; Liu B; Shi J Exp Biol Med (Maywood); 2021 Feb; 246(4):436-446. PubMed ID: 33175612 [TBL] [Abstract][Full Text] [Related]
20. DNA methylation-based age clocks: From age prediction to age reversion. Noroozi R; Ghafouri-Fard S; Pisarek A; Rudnicka J; Spólnicka M; Branicki W; Taheri M; Pośpiech E Ageing Res Rev; 2021 Jul; 68():101314. PubMed ID: 33684551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]