These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 38956528)
1. Using machine-learning models to predict extubation failure in neonates with bronchopulmonary dysplasia. Tao Y; Ding X; Guo WL BMC Pulm Med; 2024 Jul; 24(1):308. PubMed ID: 38956528 [TBL] [Abstract][Full Text] [Related]
2. Development of a machine learning model and nomogram to predict seizures in children with COVID-19: a two-center study. Liu YQ; Yuan WH; Tao Y; Zhao L; Guo WL J Trop Pediatr; 2024 Apr; 70(3):. PubMed ID: 38670794 [TBL] [Abstract][Full Text] [Related]
3. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
4. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
5. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
6. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
7. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
8. Risk factors and machine learning prediction models for bronchopulmonary dysplasia severity in the Chinese population. He W; Zhang L; Feng R; Fang WH; Cao Y; Sun SQ; Shi P; Zhou JG; Tang LF; Zhang XB; Qi YY World J Pediatr; 2023 Jun; 19(6):568-576. PubMed ID: 36357648 [TBL] [Abstract][Full Text] [Related]
9. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma. Dong B; Zhang H; Duan Y; Yao S; Chen Y; Zhang C J Transl Med; 2024 May; 22(1):455. PubMed ID: 38741163 [TBL] [Abstract][Full Text] [Related]
10. A Nomogram for Predicting Extubation Failure in Preterm Infants with Gestational Age Less than 29 Weeks. Chen F; Chen Y; Wu Y; Zhu X; Shi Y Neonatology; 2023; 120(4):424-433. PubMed ID: 37257426 [TBL] [Abstract][Full Text] [Related]
11. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning. Zhang L; Zhou X; Cao J PeerJ; 2024; 12():e16867. PubMed ID: 38313005 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning for Prediction of Successful Extubation of Mechanical Ventilated Patients in an Intensive Care Unit: A Retrospective Observational Study. Otaguro T; Tanaka H; Igarashi Y; Tagami T; Masuno T; Yokobori S; Matsumoto H; Ohwada H; Yokota H J Nippon Med Sch; 2021 Nov; 88(5):408-417. PubMed ID: 33692291 [TBL] [Abstract][Full Text] [Related]
13. Prediction of extubation failure among low birthweight neonates using machine learning. Natarajan A; Lam G; Liu J; Beam AL; Beam KS; Levin JC J Perinatol; 2023 Feb; 43(2):209-214. PubMed ID: 36611107 [TBL] [Abstract][Full Text] [Related]
14. Utilizing machine learning algorithms for predicting risk factors for bone metastasis from right-sided colon carcinoma after complete mesocolic excision: a 10-year retrospective multicenter study. Liu Y; Liu Y; Wang S; Niu S; Wang L; Xie J; Zhao N; Zhao S; Cheng C; Dai T Discov Oncol; 2024 Sep; 15(1):463. PubMed ID: 39298052 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Machine Learning Algorithms and Nomogram Construction for Diabetic Retinopathy Prediction in Type 2 Diabetes Mellitus Patients. Jiang W; Li Z Ophthalmic Res; 2024; 67(1):537-548. PubMed ID: 39231456 [TBL] [Abstract][Full Text] [Related]
16. [Establishment and efficiency test of a clinical prediction model of bronchopulmonary dysplasia associated pulmonary hypertension in very premature infants]. Cao JK; Fan HQ; Xiao YB; Wang D; Liu CG; Peng XM; Gao XR; Tang SH; Han T; Mei YB; Liang HY; Wang SM; Wang F; Li QP Zhonghua Er Ke Za Zhi; 2024 Feb; 62(2):129-137. PubMed ID: 38264812 [No Abstract] [Full Text] [Related]
17. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
18. Development of predictive model for the neurological deterioration among mild traumatic brain injury patients using machine learning algorithms. Shan B; Wang R; Xu J Neurosurg Rev; 2024 Aug; 47(1):500. PubMed ID: 39196460 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive breathing variability indices enhance the prediction of extubation failure in patients on mechanical ventilation. Pan Q; Zhang H; Jiang M; Ning G; Fang L; Ge H Comput Biol Med; 2023 Feb; 153():106459. PubMed ID: 36603435 [TBL] [Abstract][Full Text] [Related]
20. Prediction and validation of mild cognitive impairment in occupational dust exposure population based on machine learning. Cai F; Xue S; Si G; Liu Y; Chen X; He J; Zhang M Ecotoxicol Environ Saf; 2024 Oct; 285():117111. PubMed ID: 39332198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]