These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 38956606)
1. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods. Hu M; Chikina M Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606 [TBL] [Abstract][Full Text] [Related]
2. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. Sang-Aram C; Browaeys R; Seurinck R; Saeys Y Elife; 2024 May; 12():. PubMed ID: 38787371 [TBL] [Abstract][Full Text] [Related]
3. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
4. Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges. Nguyen H; Nguyen H; Tran D; Draghici S; Nguyen T Nucleic Acids Res; 2024 May; 52(9):4761-4783. PubMed ID: 38619038 [TBL] [Abstract][Full Text] [Related]
5. DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification. Decamps C; Arnaud A; Petitprez F; Ayadi M; Baurès A; Armenoult L; ; Escalera S; Guyon I; Nicolle R; Tomasini R; de Reyniès A; Cros J; Blum Y; Richard M BMC Bioinformatics; 2021 Oct; 22(1):473. PubMed ID: 34600479 [TBL] [Abstract][Full Text] [Related]
6. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
7. Systematic evaluation with practical guidelines for single-cell and spatially resolved transcriptomics data simulation under multiple scenarios. Duo H; Li Y; Lan Y; Tao J; Yang Q; Xiao Y; Sun J; Li L; Nie X; Zhang X; Liang G; Liu M; Hao Y; Li B Genome Biol; 2024 Jun; 25(1):145. PubMed ID: 38831386 [TBL] [Abstract][Full Text] [Related]
8. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition. Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800 [TBL] [Abstract][Full Text] [Related]
9. Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells. Chiu YJ; Hsieh YH; Huang YH BMC Med Genomics; 2019 Dec; 12(Suppl 8):169. PubMed ID: 31856824 [TBL] [Abstract][Full Text] [Related]
10. Robust and accurate estimation of cellular fraction from tissue omics data via ensemble deconvolution. Cai M; Yue M; Chen T; Liu J; Forno E; Lu X; Billiar T; Celedón J; McKennan C; Chen W; Wang J Bioinformatics; 2022 May; 38(11):3004-3010. PubMed ID: 35438146 [TBL] [Abstract][Full Text] [Related]
11. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Stock M; Popp N; Fiorentino J; Scialdone A Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250 [TBL] [Abstract][Full Text] [Related]
12. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology. Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342 [TBL] [Abstract][Full Text] [Related]
14. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Sturm G; Finotello F; Petitprez F; Zhang JD; Baumbach J; Fridman WH; List M; Aneichyk T Bioinformatics; 2019 Jul; 35(14):i436-i445. PubMed ID: 31510660 [TBL] [Abstract][Full Text] [Related]
16. Bulk brain tissue cell-type deconvolution with bias correction for single-nuclei RNA sequencing data using DeTREM. O'Neill NK; Stein TD; Hu J; Rehman H; Campbell JD; Yajima M; Zhang X; Farrer LA BMC Bioinformatics; 2023 Sep; 24(1):349. PubMed ID: 37726653 [TBL] [Abstract][Full Text] [Related]
17. InstaPrism: an R package for fast implementation of BayesPrism. Hu M; Chikina M Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38970377 [TBL] [Abstract][Full Text] [Related]
18. Simulating multiple variability in spatially resolved transcriptomics with scCube. Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Yan L; Sun X Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36515467 [TBL] [Abstract][Full Text] [Related]
20. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge. Chen C; Leung YY; Ionita M; Wang LS; Li M Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]