These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38956728)

  • 21. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracting entities with attributes in clinical text via joint deep learning.
    Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H
    J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.
    Han X; Kim JJ; Kwoh CK
    J Biomed Semantics; 2016; 7():22. PubMed ID: 27127603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BiodivNERE: Gold standard corpora for named entity recognition and relation extraction in the biodiversity domain.
    Abdelmageed N; Löffler F; Feddoul L; Algergawy A; Samuel S; Gaikwad J; Kazem A; König-Ries B
    Biodivers Data J; 2022; 10():e89481. PubMed ID: 36761617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach.
    Hu D; Zhang H; Li S; Wang Y; Wu N; Lu X
    JMIR Med Inform; 2021 Jul; 9(7):e27955. PubMed ID: 34287213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A BERT-Span model for Chinese named entity recognition in rehabilitation medicine.
    Zhong J; Xuan Z; Wang K; Cheng Z
    PeerJ Comput Sci; 2023; 9():e1535. PubMed ID: 37705622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knowledge Adaptive Multi-Way Matching Network for Biomedical Named Entity Recognition via Machine Reading Comprehension.
    Chen P; Wang J; Lin H; Zhang Y; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2101-2111. PubMed ID: 37018273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing Information Extraction to Radiology Information Systems to Improve the Efficiency on Reading Reports.
    Xie Z; Yang Y; Wang M; Li M; Huang H; Zheng D; Shu R; Ling T
    Methods Inf Med; 2019 Sep; 58(2-03):94-106. PubMed ID: 31514210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.
    Sahadevan S; Hofmann-Apitius M; Schellander K; Tesfaye D; Fluck J; Friedrich CM
    J Anim Sci; 2012 Oct; 90(10):3666-76. PubMed ID: 22665627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neural network multi-task learning approach to biomedical named entity recognition.
    Crichton G; Pyysalo S; Chiu B; Korhonen A
    BMC Bioinformatics; 2017 Aug; 18(1):368. PubMed ID: 28810903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical concept and relation extraction using prompt-based machine reading comprehension.
    Peng C; Yang X; Yu Z; Bian J; Hogan WR; Wu Y
    J Am Med Inform Assoc; 2023 Aug; 30(9):1486-1493. PubMed ID: 37316988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dictionary-based matching graph network for biomedical named entity recognition.
    Lou Y; Zhu X; Tan K
    Sci Rep; 2023 Dec; 13(1):21667. PubMed ID: 38066007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Text Mining Pipeline Using Active and Deep Learning Aimed at Curating Information in Computational Neuroscience.
    Shardlow M; Ju M; Li M; O'Reilly C; Iavarone E; McNaught J; Ananiadou S
    Neuroinformatics; 2019 Jul; 17(3):391-406. PubMed ID: 30443819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Candidate region aware nested named entity recognition.
    Jiang D; Ren H; Cai Y; Xu J; Liu Y; Leung HF
    Neural Netw; 2021 Oct; 142():340-350. PubMed ID: 34102545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning.
    Zhang Y; Xu J; Chen H; Wang J; Wu Y; Prakasam M; Xu H
    Database (Oxford); 2016; 2016():. PubMed ID: 27087307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study.
    Jiang M; Sanger T; Liu X
    JMIR Med Inform; 2019 Nov; 7(4):e14850. PubMed ID: 31719024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method for named entity normalization in biomedical articles: application to diseases and plants.
    Cho H; Choi W; Lee H
    BMC Bioinformatics; 2017 Oct; 18(1):451. PubMed ID: 29029598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.