These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38957865)

  • 1. Nanomaterial and interface advances in immunoassay biosensors.
    Calidonio JM; Gomez-Marquez J; Hamad-Schifferli K
    J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(42):17804-17815. PubMed ID: 38957865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges of the Nano-Bio Interface in Lateral Flow and Dipstick Immunoassays.
    de Puig H; Bosch I; Gehrke L; Hamad-Schifferli K
    Trends Biotechnol; 2017 Dec; 35(12):1169-1180. PubMed ID: 28965747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Paper-Based Immunoassays for Biomedical Applications.
    Hristov DR; Rodriguez-Quijada C; Gomez-Marquez J; Hamad-Schifferli K
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30699964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics.
    Nishat S; Awan FR; Bajwa SZ
    Anal Sci; 2019 Feb; 35(2):123-131. PubMed ID: 30224569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance.
    Hristov DR; Pimentel AJ; Ujialele G; Hamad-Schifferli K
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34620-34629. PubMed ID: 32633115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays.
    Tam JO; de Puig H; Yen CW; Bosch I; Gómez-Márquez J; Clavet C; Hamad-Schifferli K; Gehrke L
    J Immunoassay Immunochem; 2017; 38(4):355-377. PubMed ID: 27982728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivalent Antibody-Nanoparticle Conjugates To Enhance the Sensitivity of Surface-Enhanced Raman Scattering-Based Immunoassays.
    Lee M; Kim H; Kim E; Yi SY; Hwang SG; Yang S; Lim EK; Kim B; Jung J; Kang T
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37829-37834. PubMed ID: 30360053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case.
    Soler M; Estevez MC; Cardenosa-Rubio M; Astua A; Lechuga LM
    ACS Sens; 2020 Sep; 5(9):2663-2678. PubMed ID: 32786383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of SERS nanotags for multiplexed lateral flow immunoassays.
    Sánchez-Purrà M; Roig-Solvas B; Versiani A; Rodríguez-Quijada C; de Puig H; Bosch I; Gehrke L; Hamad-Schifferli K
    Mol Syst Des Eng; 2017 Oct; 2(4):401-409. PubMed ID: 31681479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface.
    Algar WR; Jeen T; Massey M; Peveler WJ; Asselin J
    Langmuir; 2019 Jun; 35(22):7067-7091. PubMed ID: 30415548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends and Innovations in Biosensors for COVID-19 Mass Testing.
    Santiago I
    Chembiochem; 2020 Oct; 21(20):2880-2889. PubMed ID: 32367615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2.
    Sengupta J; Hussain CM
    Bioelectrochemistry; 2024 Apr; 156():108623. PubMed ID: 38070365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19.
    Mousavi SM; Kalashgrani MY; Gholami A; Omidifar N; Binazadeh M; Chiang WH
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept.
    Kropaneva M; Khramtsov P; Bochkova M; Lazarev S; Kiselkov D; Rayev M
    Biosensors (Basel); 2023 Aug; 13(9):. PubMed ID: 37754091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Nanomaterial-based Optical Biosensors as Potential Point-of-Care Testing (PoCT) Probes in Carcinoembryonic Antigen Detection.
    Suan Ng S; Ling Lee H; Bothi Raja P; Doong RA
    Chem Asian J; 2022 Jul; 17(14):e202200287. PubMed ID: 35471591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay.
    Kim MS; Kweon SH; Cho S; An SSA; Kim MI; Doh J; Lee J
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35133-35140. PubMed ID: 28944656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New trends in immunoassays.
    Chan CP; Cheung YC; Renneberg R; Seydack M
    Adv Biochem Eng Biotechnol; 2008; 109():123-54. PubMed ID: 17874052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics.
    de Araujo WR; Lukas H; Torres MDT; Gao W; de la Fuente-Nunez C
    ACS Nano; 2024 Jan; 18(3):1757-1777. PubMed ID: 38189684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of affinity-based biosensors.
    Rogers KR
    Mol Biotechnol; 2000 Feb; 14(2):109-29. PubMed ID: 10872504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics.
    Busin V; Wells B; Kersaudy-Kerhoas M; Shu W; Burgess ST
    Mol Cell Probes; 2016 Oct; 30(5):331-341. PubMed ID: 27430150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.