These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38957875)

  • 1. Molecular structure and composition elucidation of an industrial humin and its fractions.
    Constant S; Lancefield CS; Vogelzang W; Pazhavelikkakath Purushothaman RK; Frissen AE; Houben K; de Peinder P; Baldus M; Weckhuysen BM; van Es DS; Bruijnincx PCA
    Green Chem; 2024 Jul; 26(13):7739-7751. PubMed ID: 38957875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Furanic Humins-Based Non-Isocyanate Polyurethane (NIPU) Thermoset Wood Adhesives.
    Chen X; Pizzi A; Essawy H; Fredon E; Gerardin C; Guigo N; Sbirrazzuoli N
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33504084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic understanding of humin formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid.
    Xu Z; Yang Y; Yan P; Xia Z; Liu X; Zhang ZC
    RSC Adv; 2020 Sep; 10(57):34732-34737. PubMed ID: 35514398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered humin compositions under organic and inorganic fertilization on an intensively cultivated sandy loam soil.
    Xu J; Zhao B; Chu W; Mao J; Olk DC; Xin X; Zhang J
    Sci Total Environ; 2017 Dec; 601-602():356-364. PubMed ID: 28570970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furanic Humins from Biorefinery as Biobased Binder for Bitumen.
    Sangregorio A; Guigo N; Vincent L; de Jong E; Sbirrazzuoli N
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical extractions affect the structure and phenanthrene sorption of soil humin.
    Wang K; Xing B
    Environ Sci Technol; 2005 Nov; 39(21):8333-40. PubMed ID: 16294871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensation of α-Carbonyl Aldehydes Leads to the Formation of Solid Humins during the Hydrothermal Degradation of Carbohydrates.
    Shi N; Liu Q; Ju R; He X; Zhang Y; Tang S; Ma L
    ACS Omega; 2019 Apr; 4(4):7330-7343. PubMed ID: 31459833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Formation, Characterization, and Oxidative Catalytic Valorization of Humins.
    Wassenberg A; Esser T; Poller MJ; Albert J
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions.
    Velasco Calderón JC; Arora JS; Mushrif SH
    ACS Omega; 2022 Dec; 7(49):44786-44795. PubMed ID: 36530267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution Process and Controlled Synthesis of Humins with 5-Hydroxymethylfurfural (HMF) as Model Molecule.
    Shen H; Shan H; Liu L
    ChemSusChem; 2020 Feb; 13(3):513-519. PubMed ID: 31746122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.
    Cantarutti C; Dinu R; Mija A
    Biomacromolecules; 2020 Feb; 21(2):517-533. PubMed ID: 31675230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humin as an electron mediator for microbial reductive dehalogenation.
    Zhang C; Katayama A
    Environ Sci Technol; 2012 Jun; 46(12):6575-83. PubMed ID: 22582856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenanthrene sorption to soil humic acid and different humin fractions.
    Wen B; Zhang JJ; Zhang SZ; Shan XQ; Khan SU; Xing B
    Environ Sci Technol; 2007 May; 41(9):3165-71. PubMed ID: 17539521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid.
    Song G; Hayes MH; Novotny EH; Simpson AJ
    Naturwissenschaften; 2011 Jan; 98(1):7-13. PubMed ID: 21104221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction.
    Zhang J; Yin H; Wang H; Xu L; Samuel B; Chang J; Liu F; Chen H
    Sci Total Environ; 2019 Feb; 651(Pt 2):2975-2984. PubMed ID: 30463148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characteristics of sediment humins from South Korean lakes and their phenanthrene binding compared to other carbon sources.
    Nguyen HV; Lee DH; Lee HS; Shin HS
    Environ Res; 2022 Aug; 211():113037. PubMed ID: 35248562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Humin Formation and Separation Studied In Situ by Centrifugation.
    Echtermeyer AWW; Viell J
    ACS Omega; 2024 Feb; 9(6):6432-6441. PubMed ID: 38371814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy.
    Simpson AJ; Song G; Smith E; Lam B; Novotny EH; Hayes MH
    Environ Sci Technol; 2007 Feb; 41(3):876-83. PubMed ID: 17328197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenanthrene sorption to sequentially extracted soil humic acids and humins.
    Kang S; Xing B
    Environ Sci Technol; 2005 Jan; 39(1):134-40. PubMed ID: 15667087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.