These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38958094)

  • 1. Optimizing Crystal Orientation and Defect Mitigation in Antimony Selenide Thin-Film Solar Cells through Buffer Layer Energy Band Adjustment.
    Yang Y; Zhang T; Zhu H; Geng K; Huang S; Shen B; Dong B; Zhang S; Gu D; Jiang S; Yan Y; Guo H; Qiu J; Li L; Yuan N; Ding J
    Small; 2024 Jul; ():e2403292. PubMed ID: 38958094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell.
    Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-Vertically Oriented Sb
    Fan P; Chen GJ; Chen S; Zheng ZH; Azam M; Ahmad N; Su ZH; Liang GX; Zhang XH; Chen ZG
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46671-46680. PubMed ID: 34569779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent investigation of antimony chalcogenide (Sb
    Rahman MF; Alam Moon MM; Hossain MK; Ali MH; Haque MD; Kuddus A; Hossain J; Md Ismail AB
    Heliyon; 2022 Dec; 8(12):e12034. PubMed ID: 36531642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement in Sb
    Li G; Li Z; Liang X; Guo C; Shen K; Mai Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):828-834. PubMed ID: 30525397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Energy-driven Molecular Precursor Decomposition on the Crystal Orientation of Antimony Selenide Film and Solar Cell Efficiency.
    Li K; Yang J; Cai Z; Gu Y; Liu A; Zhu C; Tang R; Chen T
    Small Methods; 2024 Mar; ():e2400227. PubMed ID: 38546020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Passivation of Anion Vacancies in Antimony Selenide Film for Efficient Solar Cells.
    Cai Z; Che B; Gu Y; Xiao P; Wu L; Liang W; Zhu C; Chen T
    Adv Mater; 2024 May; ():e2404826. PubMed ID: 38743030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 24% Efficient, Simple ZnSe/Sb
    Kumari R; Mamta M; Kumar R; Singh Y; Singh VN
    ACS Omega; 2023 Jan; 8(1):1632-1642. PubMed ID: 36643481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, Morphology, and Photoelectric Performances of Te-Sb
    Ren D; Luo X; Chen S; Zheng Z; Cathelinaud M; Liang G; Ma H; Qiao X; Fan X; Zhang X
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing Buried Interface Nonradiative Recombination Losses Toward High-Efficiency Antimony Triselenide Solar Cells.
    Chen G; Luo Y; Abbas M; Ishaq M; Zheng Z; Chen S; Su Z; Zhang X; Fan P; Liang G
    Adv Mater; 2024 Feb; 36(5):e2308522. PubMed ID: 37922408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed Layer Optimisation for Ultra-Thin Sb
    Juškėnas R; Naujokaitis A; Drabavičius A; Pakštas V; Vainauskas D; Kondrotas R
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Routes to increase performance for antimony selenide solar cells using inorganic hole transport layers.
    Campbell S; Phillips LJ; Major JD; Hutter OS; Voyce R; Qu Y; Beattie NS; Zoppi G; Barrioz V
    Front Chem; 2022; 10():954588. PubMed ID: 36226119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Cu-Doping for Performance Improvement in Sb
    Spaggiari G; Bersani D; Calestani D; Gilioli E; Gombia E; Mezzadri F; Casappa M; Pattini F; Trevisi G; Rampino S
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep defects limiting the conversion efficiency of Sb
    Dong S; Li G; Hong J; Qi R; Yang S; Yang P; Sun L; Yue F
    Phys Chem Chem Phys; 2023 Feb; 25(6):4617-4623. PubMed ID: 36723191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Epitaxial Growth of (hk1)-Sb
    Xiao L; Liu Z; Zhang G; Feng W
    Small; 2024 May; 20(22):e2308229. PubMed ID: 38126649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Growth Promotion and Defects Healing Enable Minimum Open-Circuit Voltage Deficit in Antimony Selenide Solar Cells.
    Liang G; Chen M; Ishaq M; Li X; Tang R; Zheng Z; Su Z; Fan P; Zhang X; Chen S
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105142. PubMed ID: 35088583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Sputtering Pressure on High-Quality Sb
    Tang R; Chen X; Luo Y; Chen Z; Liu Y; Li Y; Su Z; Zhang X; Fan P; Liang G
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32235709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of working pressure and power on photovoltaic and defect properties of magnetron sputtered Sb
    Wang Y; Li J; Chen Y; Zhou J; Zhang J; Mao W; Zheng S; Pan Y; Liu Y; Dai K; Hu X; Tao J; Weng G; Jiang J; Chen S; Chu J
    Appl Opt; 2020 Feb; 59(4):948-954. PubMed ID: 32225231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertically Aligned One-Dimensional Crystal-Structured Sb
    Wen X; Lu Z; Yang X; Chen C; Washington MA; Wang GC; Tang J; Zhao Q; Lu TM
    ACS Appl Mater Interfaces; 2023 May; 15(18):22251-22262. PubMed ID: 37126652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline Antimony Selenide Thin Films for Optoelectronics through Photonic Curing.
    Wijesinghe U; Tetlow WD; Maiello P; Fleck N; O'Dowd G; Beattie NS; Longo G; Hutter OS
    Chem Mater; 2024 Jun; 36(12):6027-6037. PubMed ID: 38947981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.