These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38958555)
1. Evaluation of PVC and PTFE filters for direct-on-filter crystalline silica quantification by FTIR. Osho B; Elahifard M; Wang X; Abbasi B; Chow JC; Watson JG; Arnott WP; Reed WR; Parks D J Occup Environ Hyg; 2024 Aug; 21(8):539-550. PubMed ID: 38958555 [TBL] [Abstract][Full Text] [Related]
2. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy. Farcas D; Lee T; Chisholm WP; Soo JC; Harper M J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614 [TBL] [Abstract][Full Text] [Related]
3. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions. Stacey P; Clegg F; Sammon C Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples. Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081 [TBL] [Abstract][Full Text] [Related]
5. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. Cauda E; Miller A; Drake P J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490 [TBL] [Abstract][Full Text] [Related]
6. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Stacey P; Clegg F; Rhyder G; Sammon C Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072 [TBL] [Abstract][Full Text] [Related]
7. Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica. Ashley EL; Cauda E; Chubb LG; Tuchman DP; Rubinstein EN Ann Work Expo Health; 2020 Jun; 64(5):536-546. PubMed ID: 32266371 [TBL] [Abstract][Full Text] [Related]
8. An indirect Raman spectroscopy method for the quantitative measurement of respirable crystalline silica collected on filters inside respiratory equipment. Stacey P; Clegg F; Morton J; Sammon C Anal Methods; 2020 Jun; 12(21):2757-2771. PubMed ID: 32930307 [TBL] [Abstract][Full Text] [Related]
9. Lowering reporting limit values for respirable crystalline silica analysis by X-ray diffraction in preparation of the 0.025 mg/m3 occupational exposure limit. Ichikawa A; Corke E; Moubarak AM; Mazereeuw M; Volpato J; Weller M; Clemence D Ann Work Expo Health; 2024 Sep; 68(8):859-866. PubMed ID: 39102735 [TBL] [Abstract][Full Text] [Related]
10. A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method. Hart JF; Autenrieth DA; Cauda E; Chubb L; Spear TM; Wock S; Rosenthal S J Occup Environ Hyg; 2018 Oct; 15(10):743-754. PubMed ID: 29985762 [TBL] [Abstract][Full Text] [Related]
11. Performance of high flow rate samplers for respirable particle collection. Lee T; Kim SW; Chisholm WP; Slaven J; Harper M Ann Occup Hyg; 2010 Aug; 54(6):697-709. PubMed ID: 20660144 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust. Stipe CB; Miller AL; Brown J; Guevara E; Cauda E Appl Spectrosc; 2012 Nov; 66(11):1286-93. PubMed ID: 23146184 [TBL] [Abstract][Full Text] [Related]
13. Evaluating portable infrared spectrometers for measuring the silica content of coal dust. Miller AL; Drake PL; Murphy NC; Noll JD; Volkwein JC J Environ Monit; 2012 Jan; 14(1):48-55. PubMed ID: 22130611 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the Analysis of Respirable Crystalline Silica in Workplace Air by Direct-on-Filter Methods using X-ray Diffraction and Fourier Transform Infrared Spectroscopy. Ichikawa A; Volpato J; O'Donnell GE; Mazereeuw M Ann Work Expo Health; 2022 Jun; 66(5):632-643. PubMed ID: 34718400 [TBL] [Abstract][Full Text] [Related]
15. Monitoring Worker Exposure to Respirable Crystalline Silica: Application for Data-driven Predictive Modeling for End-of-Shift Exposure Assessment. Wolfe C; Chubb L; Walker R; Yekich M; Cauda E Ann Work Expo Health; 2022 Oct; 66(8):1010-1021. PubMed ID: 35716068 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the use of a field-based silica monitoring approach with dust from copper mines. Cauda E; Chubb L; Reed R; Stepp R J Occup Environ Hyg; 2018 Oct; 15(10):732-742. PubMed ID: 29985785 [TBL] [Abstract][Full Text] [Related]
17. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000-2019. Misra S; Sussell AL; Wilson SE; Poplin GS Am J Ind Med; 2023 Mar; 66(3):199-212. PubMed ID: 36705259 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Occupational Exposures to Respirable Silica and Dust in Demolition, Crushing, and Chipping Activities. Bello A; Mugford C; Murray A; Shepherd S; Woskie SR Ann Work Expo Health; 2019 Jan; 63(1):34-44. PubMed ID: 30379992 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the performance of samplers for respirable dust in workplaces and laboratory analysis for respirable quartz. Verpaele S; Jouret J Ann Occup Hyg; 2013 Jan; 57(1):54-62. PubMed ID: 22826536 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work. Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]