These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38958724)

  • 1. High-dimensional multi-omics measured in controlled conditions are useful for maize platform and field trait predictions.
    Ali B; Huguenin-Bizot B; Laurent M; Chaumont F; Maistriaux LC; Nicolas S; Duborjal H; Welcker C; Tardieu F; Mary-Huard T; Moreau L; Charcosset A; Runcie D; Rincent R
    Theor Appl Genet; 2024 Jul; 137(7):175. PubMed ID: 38958724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Genomic Prediction: Combining Different Types of
    Schrag TA; Westhues M; Schipprack W; Seifert F; Thiemann A; Scholten S; Melchinger AE
    Genetics; 2018 Apr; 208(4):1373-1385. PubMed ID: 29363551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods.
    Barreto CAV; das Graças Dias KO; de Sousa IC; Azevedo CF; Nascimento ACC; Guimarães LJM; Guimarães CT; Pastina MM; Nascimento M
    Sci Rep; 2024 Jan; 14(1):1062. PubMed ID: 38212638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics-based prediction of hybrid performance in canola.
    Knoch D; Werner CR; Meyer RC; Riewe D; Abbadi A; Lücke S; Snowdon RJ; Altmann T
    Theor Appl Genet; 2021 Apr; 134(4):1147-1165. PubMed ID: 33523261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction applied to multiple traits and environments in second season maize hybrids.
    de Oliveira AA; Resende MFR; Ferrão LFV; Amadeu RR; Guimarães LJM; Guimarães CT; Pastina MM; Margarido GRA
    Heredity (Edinb); 2020 Aug; 125(1-2):60-72. PubMed ID: 32472060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations.
    Hu H; Campbell MT; Yeats TH; Zheng X; Runcie DE; Covarrubias-Pazaran G; Broeckling C; Yao L; Caffe-Treml M; Gutiérrez LA; Smith KP; Tanaka J; Hoekenga OA; Sorrells ME; Gore MA; Jannink JL
    Theor Appl Genet; 2021 Dec; 134(12):4043-4054. PubMed ID: 34643760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of multi-omics data to inform genomic prediction of heifer fertility traits.
    Tahir MS; Porto-Neto LR; Reverter-Gomez T; Olasege BS; Sajid MR; Wockner KB; Tan AWL; Fortes MRS
    J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36239447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of tolerance to combined drought and heat stress in tropical maize.
    Elmyhun M; Abate E; Abate A; Teklewold A; Menkir A
    PLoS One; 2024; 19(6):e0302272. PubMed ID: 38900753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omics-based hybrid prediction in maize.
    Westhues M; Schrag TA; Heuer C; Thaller G; Utz HF; Schipprack W; Thiemann A; Seifert F; Ehret A; Schlereth A; Stitt M; Nikoloski Z; Willmitzer L; Schön CC; Scholten S; Melchinger AE
    Theor Appl Genet; 2017 Sep; 130(9):1927-1939. PubMed ID: 28647896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diallel and prediction (REML/BLUP) for yield components in intervarietal maize hybrids.
    Carvalho IR; de Pelegrin AJ; Szareski VJ; Ferrari M; da Rosa TC; Martins TS; Dos Santos NL; Nardino M; de Souza VQ; de Oliveira AC; da Maia LC
    Genet Mol Res; 2017 Aug; 16(3):. PubMed ID: 28873210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling copy number variation in the genomic prediction of maize hybrids.
    Lyra DH; Galli G; Alves FC; Granato ÍSC; Vidotti MS; Bandeira E Sousa M; Morosini JS; Crossa J; Fritsche-Neto R
    Theor Appl Genet; 2019 Jan; 132(1):273-288. PubMed ID: 30382311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of Dominance Effects in the Multivariate GBLUP Model.
    dos Santos JP; Vasconcellos RC; Pires LP; Balestre M; Von Pinho RG
    PLoS One; 2016; 11(4):e0152045. PubMed ID: 27074056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize.
    Adak A; DeSalvio AJ; Arik MA; Murray SC
    G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Multi-Omics Technologies for Crop Improvement.
    Yang Y; Saand MA; Huang L; Abdelaal WB; Zhang J; Wu Y; Li J; Sirohi MH; Wang F
    Front Plant Sci; 2021; 12():563953. PubMed ID: 34539683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data.
    Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM
    Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.
    Zhang X; Huang C; Wu D; Qiao F; Li W; Duan L; Wang K; Xiao Y; Chen G; Liu Q; Xiong L; Yang W; Yan J
    Plant Physiol; 2017 Mar; 173(3):1554-1564. PubMed ID: 28153923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-oriented prioritization: targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding.
    Yang W; Guo T; Luo J; Zhang R; Zhao J; Warburton ML; Xiao Y; Yan J
    Genome Biol; 2022 Mar; 23(1):80. PubMed ID: 35292095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.