These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38958834)

  • 1. In vitro and in vivo dissolution of biocompatible S59 glass scaffolds.
    Aalto-Setälä L; Uppstu P; Björkenheim R; Strömberg G; Lindfors NC; Pajarinen J; Hupa L
    J Mater Sci Mater Med; 2024 Jul; 35(1):38. PubMed ID: 38958834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.
    Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR
    Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regeneration.
    Erasmus EP; Sule R; Johnson OT; Massera J; Sigalas I
    Sci Rep; 2018 Feb; 8(1):3699. PubMed ID: 29487328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses.
    Anand A; Lalzawmliana V; Kumar V; Das P; Devi KB; Maji AK; Kundu B; Roy M; Nandi SK
    J Mech Behav Biomed Mater; 2019 Jan; 89():89-98. PubMed ID: 30267993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation and
    Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering.
    Fiume E; Serino G; Bignardi C; Verné E; Baino F
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robocasting of Bioactive SiO
    Baino F; Barberi J; Fiume E; Orlygsson G; Massera J; Verné E
    J Healthc Eng; 2019; 2019():5153136. PubMed ID: 31098008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.
    Mantsos T; Chatzistavrou X; Roether JA; Hupa L; Arstila H; Boccaccini AR
    Biomed Mater; 2009 Oct; 4(5):055002. PubMed ID: 19776493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regeneration.
    Szczodra A; Houaoui A; Agniel R; Sicard L; Miettinen S; Massera J; Gorin C
    Acta Biomater; 2024 Sep; 186():489-506. PubMed ID: 39098444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite scaffolds of mesoporous bioactive glass and polyamide for bone repair.
    Su J; Cao L; Yu B; Song S; Liu X; Wang Z; Li M
    Int J Nanomedicine; 2012; 7():2547-55. PubMed ID: 22679367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation.
    Brauer DS; Rüssel C; Li W; Habelitz S
    J Biomed Mater Res A; 2006 May; 77(2):213-9. PubMed ID: 16392127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Generation of Hybrid Materials Based on Gelatin and Bioactive Glass Particles for Bone Tissue Regeneration.
    Houaoui A; Szczodra A; Lallukka M; El-Guermah L; Agniel R; Pauthe E; Massera J; Boissiere M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33802745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system.
    Soundrapandian C; Mahato A; Kundu B; Datta S; Sa B; Basu D
    J Mech Behav Biomed Mater; 2014 Dec; 40():1-12. PubMed ID: 25190432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration.
    Erasmus EP; Johnson OT; Sigalas I; Massera J
    Sci Rep; 2017 Jul; 7(1):6046. PubMed ID: 28729613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.