These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38958908)
41. Multi-Spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. Abdelaziz MA; Shaldam M; El-Domany RA; Belal F Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120298. PubMed ID: 34464920 [TBL] [Abstract][Full Text] [Related]
42. Study on the interaction of bioactive compound S-allyl cysteine from garlic with serum albumin. Sun YE; Wang WD J Food Drug Anal; 2017 Apr; 25(2):385-390. PubMed ID: 28911681 [TBL] [Abstract][Full Text] [Related]
43. Interaction between a potent corticosteroid drug - dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study. Naik PN; Chimatadar SA; Nandibewoor ST J Photochem Photobiol B; 2010 Sep; 100(3):147-59. PubMed ID: 20573517 [TBL] [Abstract][Full Text] [Related]
44. Estimation of Dipole Moments and Quantum Yield of 5-chloro-2-methoxyphenyl Boronic Acid in Different Solvents Environment. Geethanjali HS; Nagaraja D; Melavanki RM J Fluoresc; 2015 May; 25(3):745-53. PubMed ID: 25820873 [TBL] [Abstract][Full Text] [Related]
45. Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Bhogale A; Patel N; Sarpotdar P; Mariam J; Dongre PM; Miotello A; Kothari DC Colloids Surf B Biointerfaces; 2013 Feb; 102():257-64. PubMed ID: 23010116 [TBL] [Abstract][Full Text] [Related]
46. To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques. Chakraborty M; Paul S; Mitra I; Bardhan M; Bose M; Saha A; Ganguly T J Photochem Photobiol B; 2018 Jan; 178():355-366. PubMed ID: 29182925 [TBL] [Abstract][Full Text] [Related]
47. Insights on the in-vitro binding interaction between donepezil and bovine serum albumin. El Gammal RN; Elmansi H; El-Emam AA; Belal F; Elzahhar PA; Belal ASF; Hammouda MEA BMC Chem; 2023 Apr; 17(1):31. PubMed ID: 37024940 [TBL] [Abstract][Full Text] [Related]
48. Interaction of tebuconazole with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. Bai J; Sun X; Ma X J Environ Sci Health B; 2020; 55(6):509-516. PubMed ID: 32037956 [TBL] [Abstract][Full Text] [Related]
49. Binding of berberine to bovine serum albumin: spectroscopic approach. Hu YJ; Ou-Yang Y; Dai CM; Liu Y; Xiao XH Mol Biol Rep; 2010 Dec; 37(8):3827-32. PubMed ID: 20213508 [TBL] [Abstract][Full Text] [Related]
50. Study on the interaction characteristics of cefamandole with bovine serum albumin by spectroscopic technique. Wang Q; Liu X; Su M; Shi Z; Sun H Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():321-6. PubMed ID: 25448935 [TBL] [Abstract][Full Text] [Related]
51. Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study. Hu YJ; Liu Y; Pi ZB; Qu SS Bioorg Med Chem; 2005 Dec; 13(24):6609-14. PubMed ID: 16126393 [TBL] [Abstract][Full Text] [Related]
52. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. Tanzadehpanah H; Mahaki H; Moghadam NH; Salehzadeh S; Rajabi O; Najafi R; Amini R; Saidijam M J Biomol Struct Dyn; 2019 Mar; 37(4):823-836. PubMed ID: 29447084 [TBL] [Abstract][Full Text] [Related]
53. Spectroscopic investigation, effect of solvent polarity and fluorescence quenching of a new D-π-A type chalcone derivative. Pannipara M; Asiri AM; Alamry KA; Arshad MN; El-Daly SA J Fluoresc; 2014 Nov; 24(6):1629-38. PubMed ID: 25169769 [TBL] [Abstract][Full Text] [Related]
54. The interaction of sonochemically synthesized gold nanoparticles with serum albumins. Naveenraj S; Anandan S; Kathiravan A; Renganathan R; Ashokkumar M J Pharm Biomed Anal; 2010 Nov; 53(3):804-10. PubMed ID: 20456895 [TBL] [Abstract][Full Text] [Related]
55. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
56. Adsorption Kinetics and Binding Studies of Protein Quantum Dots Interaction: A Spectroscopic Approach. Vaishanav SK; Korram J; Nagwanshi R; Ghosh KK; Satnami ML J Fluoresc; 2016 May; 26(3):855-65. PubMed ID: 26825079 [TBL] [Abstract][Full Text] [Related]
57. Sensitization of an endogenous photosensitizer: electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator, and metal nanoparticles. Chaudhuri S; Sardar S; Bagchi D; Singha SS; Lemmens P; Pal SK J Phys Chem A; 2015 May; 119(18):4162-9. PubMed ID: 25871406 [TBL] [Abstract][Full Text] [Related]