These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38959044)

  • 1. Flexible liquid-diode microtubes from multimodal microfluidics.
    Yang C; Li W; Zhao Y; Shang L
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402331121. PubMed ID: 38959044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Directed Liquid Manipulation in Flexible Bilayer Microtubes.
    Xu B; Zhu C; Qin L; Wei J; Yu Y
    Small; 2019 Jun; 15(24):e1901847. PubMed ID: 31062929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Microfluidics Enabled by 3D Printed Bionic Janus Porous Matrics for Microfluidic Logic Chips.
    Xie M; Zhan Z; Zhang C; Xu W; Zhang C; Chen Y; Dong Z; Wang Z
    Small; 2023 Aug; 19(34):e2300047. PubMed ID: 37127869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing of anisotropic gradient surfaces for directional liquid transport: Fundamentals, construction, and applications.
    Hou L; Liu X; Ge X; Hu R; Cui Z; Wang N; Zhao Y
    Innovation (Camb); 2023 Nov; 4(6):100508. PubMed ID: 37753526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Universal Flexible Elastomer-Based Microchannels.
    Wu F; Chen S; Chen B; Wang M; Min L; Alvarenga J; Ju J; Khademhosseini A; Yao Y; Zhang YS; Aizenberg J; Hou X
    Small; 2018 May; 14(18):e1702170. PubMed ID: 29325208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing biomimetic liquid diodes.
    Li J; Song Y; Zheng H; Feng S; Xu W; Wang Z
    Soft Matter; 2019 Feb; 15(9):1902-1915. PubMed ID: 30758033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Chip Construction of Multilayered Hydrogel Microtubes for Engineered Vascular-Like Microstructures.
    Yue T; Liu N; Liu Y; Peng Y; Xie S; Luo J; Huang Q; Takeuchi M; Fukuda T
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Topological Surface for Directional Oil Lubrication.
    Li X; Li J; Dong G
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5113-5119. PubMed ID: 31898896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Triple-Coaxial Flow Device for Fabricating a Hydrogel Microtube and Its Application to Bioremediation.
    Fujimoto K; Higashi K; Onoe H; Miki N
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquids Unidirectional Transport on Dual-Scale Arrays.
    Si Y; Wang T; Li C; Yu C; Li N; Gao C; Dong Z; Jiang L
    ACS Nano; 2018 Sep; 12(9):9214-9222. PubMed ID: 29963851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Switchable-Wettability Surfaces for Multi-Path Directional Transportation of Droplets and Subaqueous Bubbles.
    Xie D; Sun Y; Wu Y; Wang K; Wang G; Zang F; Ding G
    Adv Mater; 2023 Mar; 35(9):e2208645. PubMed ID: 36423901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned Manipulated Surface Based on Femtosecond Laser with Adjustable Wetting Speed and Directional Fluid Delivery.
    Liu S; Ma Y; Long J; Li J; Li N; Wang N; Wang M; Ruan S
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11973-11983. PubMed ID: 38394214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices.
    Feng J; Qiu Y; Gao H; Wu Y
    Acc Chem Res; 2024 Jan; 57(2):222-233. PubMed ID: 38170611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open-channel microfluidic chip based on shape memory polymer for controllable liquid transport.
    Ye WQ; Liu XP; Ma RF; Yang CG; Xu ZR
    Lab Chip; 2023 Apr; 23(8):2068-2074. PubMed ID: 36928455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.