These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38959131)
41. A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Sahoo RK; Ansari MW; Pradhan M; Dangar TK; Mohanty S; Tuteja N Plant Signal Behav; 2014; 9(7):e29377. PubMed ID: 25763502 [TBL] [Abstract][Full Text] [Related]
42. Physiological and transcriptional responses of the ectomycorrhizal fungus Cenococcum geophilum to salt stress. Li J; Li C; Tsuruta M; Matsushita N; Goto S; Shen Z; Tsugama D; Zhang S; Lian C Mycorrhiza; 2022 Jul; 32(3-4):327-340. PubMed ID: 35546369 [TBL] [Abstract][Full Text] [Related]
43. Effects of high soil moisture on formation of ectomycorrhizas and growth of karri (Eucalyptus diversicolor) seedlings inoculated with Descolea maculata, Pisolithus tinctorius and Laccaria laccata. Boucher NL; Malajczuk N New Phytol; 1990 Jan; 114(1):87-91. PubMed ID: 33874290 [TBL] [Abstract][Full Text] [Related]
44. The effect of elevated carbon dioxide on the interaction between Eucalyptus grandis and diverse isolates of Pisolithus sp. is associated with a complex shift in the root transcriptome. Plett JM; Kohler A; Khachane A; Keniry K; Plett KL; Martin F; Anderson IC New Phytol; 2015 Jun; 206(4):1423-36. PubMed ID: 25377589 [TBL] [Abstract][Full Text] [Related]
45. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Jogawat A; Saha S; Bakshi M; Dayaman V; Kumar M; Dua M; Varma A; Oelmüller R; Tuteja N; Johri AK Plant Signal Behav; 2013 Oct; 8(10):doi: 10.4161/psb.26891. PubMed ID: 24494239 [TBL] [Abstract][Full Text] [Related]
46. Proteomics Analysis of Jia T; Wang J; Chang W; Fan X; Sui X; Song F Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759832 [TBL] [Abstract][Full Text] [Related]
47. Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Wang Z; Cheng J; Chen Z; Huang J; Bao Y; Wang J; Zhang H Theor Appl Genet; 2012 Aug; 125(4):807-15. PubMed ID: 22678666 [TBL] [Abstract][Full Text] [Related]
48. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. Bouzouina M; Kouadria R; Lotmani B J Appl Microbiol; 2021 Mar; 130(3):913-925. PubMed ID: 32743928 [TBL] [Abstract][Full Text] [Related]
49. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Garg N; Pandey R Mycorrhiza; 2015 Apr; 25(3):165-80. PubMed ID: 25155616 [TBL] [Abstract][Full Text] [Related]
50. Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress. Zhang X; Han C; Gao H; Cao Y Plant Physiol Biochem; 2019 Aug; 141():20-29. PubMed ID: 31125808 [TBL] [Abstract][Full Text] [Related]
51. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Mishra P; Bhoomika K; Dubey RS Protoplasma; 2013 Feb; 250(1):3-19. PubMed ID: 22194018 [TBL] [Abstract][Full Text] [Related]
52. Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro. Sarjala T; Niemi K; Häggman H Plant Physiol Biochem; 2010 Jul; 48(7):596-601. PubMed ID: 20188581 [TBL] [Abstract][Full Text] [Related]
53. The halotolerant exopolysaccharide-producing Rhizobium azibense increases the salt tolerance mechanism in Phaseolus vulgaris (L.) by improving growth, ion homeostasis, and antioxidant defensive enzymes. Shahid M; Altaf M; Danish M Chemosphere; 2024 Jul; 360():142431. PubMed ID: 38797209 [TBL] [Abstract][Full Text] [Related]
54. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267 [TBL] [Abstract][Full Text] [Related]
55. Temperature and saline stress on seedlings of Swietenia macrophylla: a comparative study. Rahman MS; Akter S; Al-Amin M Pak J Biol Sci; 2013 Dec; 16(23):1765-70. PubMed ID: 24506045 [TBL] [Abstract][Full Text] [Related]
56. Halotolerant Citrobacter sp. remediates salinity stress and promotes the growth of Vigna radiata (L) by secreting extracellular polymeric substances (EPS) and biofilm formation: a novel active cell for microbial desalination cell (MDC). Chakraborty S; Mondal S Int Microbiol; 2024 Feb; 27(1):291-301. PubMed ID: 37329438 [TBL] [Abstract][Full Text] [Related]
57. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. Liu H; Song J; Dong L; Wang D; Zhang S; Liu J J Plant Res; 2017 Jul; 130(4):723-733. PubMed ID: 28378100 [TBL] [Abstract][Full Text] [Related]
58. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Reddy MS; Kour M; Aggarwal S; Ahuja S; Marmeisse R; Fraissinet-Tachet L Environ Microbiol; 2016 Sep; 18(8):2446-54. PubMed ID: 26626627 [TBL] [Abstract][Full Text] [Related]
59. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Farhangi-Abriz S; Torabian S Ecotoxicol Environ Saf; 2017 Mar; 137():64-70. PubMed ID: 27915144 [TBL] [Abstract][Full Text] [Related]
60. Growth and mineral accumulation in Eucalyptus camaldulensis seedlings irrigated with mixed industrial effluents. Bhati M; Singh G Bioresour Technol; 2003 Jul; 88(3):221-8. PubMed ID: 12618044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]