These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38959136)

  • 1. Myelin Surfactant Assemblies as Dynamic Pathways Guiding the Growth of Electrodeposited Copper Dendrites.
    Ferreira J; Michiels J; Herregraven M; Korevaar PA
    J Am Chem Soc; 2024 Jul; 146(28):19205-19217. PubMed ID: 38959136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows.
    Nguindjel AC; Franssen SCM; Korevaar PA
    J Am Chem Soc; 2024 Mar; 146(9):6006-6015. PubMed ID: 38391388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal Growth of Quasi Two-Dimensional Copper Dendrites by Template-free Electrodeposition.
    Yang Y; Zeng H; Wang D; Wu Y; Chen J; Huang Y; Wang P; Feng W
    Langmuir; 2023 Feb; 39(8):3045-3051. PubMed ID: 36790122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure and growth of myelins.
    Reissig L; Fairhurst DJ; Leng J; Cates ME; Mount AR; Egelhaaf SU
    Langmuir; 2010 Oct; 26(19):15192-9. PubMed ID: 20804184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the electrodeposition of copper on poly-1-naphthylamine for the amperometric detection of carbohydrates in HPLC.
    D'Eramo F; Marioli JM; Arévalo AH; Sereno LE
    Talanta; 2003 Nov; 61(3):341-52. PubMed ID: 18969193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.
    Yang Y; Han J; Ning X; Cao W; Xu W; Guo L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22534-43. PubMed ID: 25453498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows.
    van der Weijden A; Winkens M; Schoenmakers SMC; Huck WTS; Korevaar PA
    Nat Commun; 2020 Sep; 11(1):4800. PubMed ID: 32968072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organization Emerging from Marangoni and Elastocapillary Effects Directed by Amphiphile Filament Connections.
    Winkens M; Korevaar PA
    Langmuir; 2022 Sep; 38(35):10799-10809. PubMed ID: 36005886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-long periodically-twinned copper nanowires evolving from dendrites in interfacial electrodeposition.
    Lin C; Yuan G; Jiang H; Xie F
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4300-7. PubMed ID: 21128415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating.
    Tan Y; Steinmiller EM; Choi KS
    Langmuir; 2005 Oct; 21(21):9618-24. PubMed ID: 16207044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Interfacial Characteristics of Copper Electrode by Electrodeposited Cu@Ti for High-Performance Anode-Free Zinc Ion Batteries.
    Jing Y; Meng X; Chen L; Yuan C; Wei H
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18888-18897. PubMed ID: 38570319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbiting Self-Organization of Filament-Tethered Surface-Active Droplets.
    Winkens M; Vilcan A; de Visser PJ; de Graaf FV; Korevaar PA
    Small; 2023 May; 19(20):e2206800. PubMed ID: 36799188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal structures in two-metal electrodeposition systems II: Cu and Zn.
    Nakouzi E; Sultan R
    Chaos; 2012 Jun; 22(2):023122. PubMed ID: 22757529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-movement of water droplet at the gradient nanostructure of Cu fabricated using bipolar electrochemistry.
    Dorri N; Shahbazi P; Kiani A
    Langmuir; 2014 Feb; 30(5):1376-82. PubMed ID: 24417380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronucleation mechanism of copper in wastewater by controlled electrodeposition analysis.
    Diao S; Wang Y; Jin H
    RSC Adv; 2020 Oct; 10(63):38683-38694. PubMed ID: 35517557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium metal deposition under the geometrical confinement effect: Dendritic copper foam current collector.
    Zhong K; Hou X; Xue Y; Huang W; Meng B; Zhou L; Fang Z; Li L
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):697-706. PubMed ID: 37742429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic Electrodeposited Copper Surface for Robust Condensation Heat Transfer.
    Park J; Kim D; Kim H; Park WI; Lee J; Chung W
    ACS Omega; 2022 Jun; 7(22):19021-19029. PubMed ID: 35694474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation and growth mechanisms of an electrodeposited Ni-Se-Cu coating on nickel foam.
    Tan W; He H; Gao Y; Peng Y; Dai X
    J Colloid Interface Sci; 2021 Oct; 600():492-502. PubMed ID: 34023707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particulate copper electrodeposited on carbon felt for degradation of low concentration of methyl iodide in liquid radioactive wastes.
    Huang G; Huang L
    Water Sci Technol; 2019 Aug; 80(3):397-407. PubMed ID: 31596251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.