These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38959168)

  • 1. Electrochemical Skeletal Indole Editing via Nitrogen Atom Insertion by Sustainable Oxygen Reduction Reaction.
    Zhang BS; Homölle SL; Bauch T; Oliveira JCA; Warratz S; Yuan B; Gou XY; Ackermann L
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407384. PubMed ID: 38959168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late-stage diversification of indole skeletons through nitrogen atom insertion.
    Reisenbauer JC; Green O; Franchino A; Finkelstein P; Morandi B
    Science; 2022 Sep; 377(6610):1104-1109. PubMed ID: 36048958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction.
    Bieniek JC; Mashtakov B; Schollmeyer D; Waldvogel SR
    Chemistry; 2024 Feb; 30(7):e202303388. PubMed ID: 38018461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable Skeletal and Peripheral Editing of Pyrroles with Vinylcarbenes.
    Yang Y; Song Q; Sivaguru P; Liu Z; Shi D; Tian T; de Ruiter G; Bi X
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202401359. PubMed ID: 38597885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Synthetic Cycle for Heteroarene Synthesis by Nitride Insertion.
    Kelly PQ; Filatov AS; Levin MD
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202213041. PubMed ID: 36148482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification of Indoles and Pyrroles by Molecular Editing: New Frontiers in Heterocycle-to-Heterocycle Transmutation.
    Liu F; Anand L; Szostak M
    Chemistry; 2023 Apr; 29(24):e202300096. PubMed ID: 36730110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late stage functionalization of heterocycles using hypervalent iodine(iii) reagents.
    Budhwan R; Yadav S; Murarka S
    Org Biomol Chem; 2019 Jul; 17(26):6326-6341. PubMed ID: 31215580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis.
    Chen C; Wang X; Yang T
    Front Chem; 2022; 10():883474. PubMed ID: 35494647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Access to Quinazolines and Pyrimidines from Unprotected Indoles and Pyrroles through Nitrogen Atom Insertion.
    Reisenbauer JC; Paschke AK; Krizic J; Botlik BB; Finkelstein P; Morandi B
    Org Lett; 2023 Dec; 25(47):8419-8423. PubMed ID: 37983173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants.
    Chen J; Lv S; Tian S
    ChemSusChem; 2019 Jan; 12(1):115-132. PubMed ID: 30280508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal editing of pyridines through atom-pair swap from CN to CC.
    Cheng Q; Bhattacharya D; Haring M; Cao H; Mück-Lichtenfeld C; Studer A
    Nat Chem; 2024 May; 16(5):741-748. PubMed ID: 38238464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation.
    Zhang X; Su W; Guo H; Fang P; Yang K; Song Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318613. PubMed ID: 38196396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of spirocyclic scaffolds using hypervalent iodine reagents.
    Singh FV; Kole PB; Mangaonkar SR; Shetgaonkar SE
    Beilstein J Org Chem; 2018; 14():1778-1805. PubMed ID: 30112083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions.
    Chen X; Ong WJ; Kong Z; Zhao X; Li N
    Sci Bull (Beijing); 2020 Jan; 65(1):45-54. PubMed ID: 36659068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Heteroaromatic (Aryl)iodonium Imides as I-N Bond-Containing Hypervalent Iodine.
    Ishida K; Togo H; Moriyama K
    Chem Asian J; 2016 Dec; 11(24):3583-3588. PubMed ID: 27879062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.