These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38959493)

  • 1. Tailored Sugar-Mediated Porous Particle Structures for Improved Dispersion of Drug Nanoparticles in Spray-Freeze-Drying.
    Semba K; Kadota K; Kämäräinen T; Nakayama Y; Hatanaka Y; Uchiyama H; Arima-Osonoi H; Sugiyama K; Tozuka Y
    Langmuir; 2024 Jul; 40(28):14440-14454. PubMed ID: 38959493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability.
    Sonner C; Maa YF; Lee G
    J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the Pore Architecture of Ice-Templated Dextran Microparticles Using Molecular Weight and Concentration.
    Kämäräinen T; Kadota K; Tse JY; Uchiyama H; Yamanaka S; Tozuka Y
    Langmuir; 2022 May; 38(21):6741-6751. PubMed ID: 35579967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery.
    Schiffter H; Condliffe J; Vonhoff S
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders.
    Wanning S; Süverkrüp R; Lamprecht A
    Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery.
    Niwa T; Mizutani D; Danjo K
    Chem Pharm Bull (Tokyo); 2012; 60(7):870-6. PubMed ID: 22790820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying.
    D'Addio SM; Chan JG; Kwok PC; Benson BR; Prud'homme RK; Chan HK
    Pharm Res; 2013 Nov; 30(11):2891-901. PubMed ID: 23893019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.
    Niwa T; Shimabara H; Danjo K
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):195-200. PubMed ID: 20118578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein spheres prepared by drop jet freeze drying.
    Eggerstedt SN; Dietzel M; Sommerfeld M; Süverkrüp R; Lamprecht A
    Int J Pharm; 2012 Nov; 438(1-2):160-6. PubMed ID: 22960322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dextran or hydroxyethyl starch in spray-freeze-dried trehalose/mannitol microparticles intended as ballistic particulate carriers for proteins.
    Rochelle C; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2296-309. PubMed ID: 17274046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique.
    Kondo M; Niwa T; Okamoto H; Danjo K
    Chem Pharm Bull (Tokyo); 2009 Jul; 57(7):657-62. PubMed ID: 19571408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin.
    Kadota K; Yanagawa Y; Tachikawa T; Deki Y; Uchiyama H; Shirakawa Y; Tozuka Y
    Int J Pharm; 2019 Jan; 555():280-290. PubMed ID: 30471373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation.
    Yu H; Teo J; Chew JW; Hadinoto K
    Int J Pharm; 2016 Feb; 499(1-2):38-46. PubMed ID: 26757148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic Droplet Stream Expansion for the Production of Spray Freeze-Dried Powders.
    Wanning S; Süverkrüp R; Lamprecht A
    AAPS PharmSciTech; 2017 Jul; 18(5):1760-1769. PubMed ID: 27761706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology.
    Tanaka R; Hattori Y; Otsuka M; Ashizawa K
    Drug Dev Ind Pharm; 2020 Feb; 46(2):179-187. PubMed ID: 31937148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray freeze drying for dry powder inhalation of nanoparticles.
    Ali ME; Lamprecht A
    Eur J Pharm Biopharm; 2014 Aug; 87(3):510-7. PubMed ID: 24657824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can spray freeze-drying improve the re-dispersion of crystalline nanoparticles of pure naproxen?
    Braig V; Konnerth C; Peukert W; Lee G
    Int J Pharm; 2019 Jun; 564():293-298. PubMed ID: 31022500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles.
    Wang Y; Kho K; Cheow WS; Hadinoto K
    Int J Pharm; 2012 Mar; 424(1-2):98-106. PubMed ID: 22226876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations.
    Babenko M; Alany RG; Calabrese G; Kaialy W; ElShaer A
    Int J Pharm; 2022 Apr; 617():121601. PubMed ID: 35181460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.