These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38959617)

  • 1. The influence of chlorination additives on metal separation during the pyrometallurgical recovery of spent lithium-ion batteries.
    Qu G; Wei Y; Li B; Wang H
    Waste Manag; 2024 Sep; 186():331-344. PubMed ID: 38959617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries.
    Qu G; Wei Y; Liu C; Yao S; Zhou S; Li B
    Waste Manag; 2022 Aug; 150():66-74. PubMed ID: 35803158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for metal loss in smelting of recycled spent lithium-ion batteries: The overlooked role of refractory materials.
    Qu G; Yang J; Wei Y; Zhou S; Li B; Wang H
    J Environ Manage; 2024 Jan; 349():119438. PubMed ID: 37939467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials.
    Qu G; Yang J; Wang H; Ran Y; Li B; Wei Y
    Waste Manag; 2023 Jul; 166():222-232. PubMed ID: 37196388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent Lithium-ion batteries by low-temperature NH
    Xu X; Mu W; Xiao T; Li L; Xin H; Lei X; Luo S
    Waste Manag; 2022 Nov; 153():61-71. PubMed ID: 36055176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries.
    Xiao J; Gao R; Niu B; Xu Z
    J Hazard Mater; 2021 Apr; 407():124704. PubMed ID: 33338813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries.
    Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A
    Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11960-11966. PubMed ID: 28915021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.
    Nayaka GP; Pai KV; Manjanna J; Keny SJ
    Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries.
    Yang L; Gao Z; Liu T; Huang M; Liu G; Feng Y; Shao P; Luo X
    Environ Sci Technol; 2023 Mar; 57(11):4591-4597. PubMed ID: 36881640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO
    Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S
    J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.