These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38959774)

  • 1. Investigating the acidophilic microbial community's adaptation for enhancement indium bioleaching from high pulp density shredded discarded LCD panels.
    Constantin A; Pourhossein F; Ray D; Farnaud S
    J Environ Manage; 2024 Aug; 365():121521. PubMed ID: 38959774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of indium from end-of-life LCD panels via catalysis by synergistic microbial communities.
    Xie Y; Wang S; Tian X; Che L; Wu X; Zhao F
    Sci Total Environ; 2019 Mar; 655():781-786. PubMed ID: 30481705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid thermal-biological recycling route for efficient extraction of metals and metalloids from end-of-life liquid crystal displays (LCDs).
    Parsa A; Bahaloo Horeh N; Mousavi SM
    Chemosphere; 2024 Mar; 352():141408. PubMed ID: 38336041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.
    Savvilotidou V; Hahladakis JN; Gidarakos E
    Waste Manag; 2015 Nov; 45():314-24. PubMed ID: 26087646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis.
    Cui J; Zhu N; Mao F; Wu P; Dang Z
    Sci Total Environ; 2021 Oct; 790():148151. PubMed ID: 34111782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized indium solubilization from LCD panels using H
    Houssaine Moutiy E; Tran LH; Mueller KK; Coudert L; Blais JF
    Waste Manag; 2020 Aug; 114():53-61. PubMed ID: 32659687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of critical metals from waste OLED touch screens using adapted acidophilic bacteria.
    Pourhossein F; Rezaei O; Mousavi SM; Beolchini F
    J Environ Health Sci Eng; 2021 Jun; 19(1):893-906. PubMed ID: 34150280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review.
    Biswal BK; Balasubramanian R
    Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy.
    Swain B; Mishra C; Hong HS; Cho SS
    Waste Manag; 2016 Nov; 57():207-214. PubMed ID: 26944866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave.
    Zhang K; Li B; Wu Y; Wang W; Li R; Zhang YN; Zuo T
    Waste Manag; 2017 Jun; 64():236-243. PubMed ID: 28347586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and recovery of glass, plastic and indium from spent LCD panels.
    Ferella F; Belardi G; Marsilii A; De Michelis I; Vegliò F
    Waste Manag; 2017 Feb; 60():569-581. PubMed ID: 28038903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-current leaching of indium from end-of-life LCD panels.
    Rocchetti L; Amato A; Fonti V; Ubaldini S; De Michelis I; Kopacek B; Vegliò F; Beolchini F
    Waste Manag; 2015 Aug; 42():180-7. PubMed ID: 25997989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beneficiation and classification of ITO concentrate from waste LCD panel for industrial-scale indium extraction.
    Park JR; Lee CG; Swain B
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90209-90222. PubMed ID: 36976472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China.
    Wang H; Gu Y; Wu Y; Zhang YN; Wang W
    Waste Manag; 2015 Dec; 46():480-7. PubMed ID: 26277718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review.
    Zheng K; Benedetti MF; van Hullebusch ED
    J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays.
    Savvilotidou V; Kousaiti A; Batinic B; Vaccari M; Kastanaki E; Karagianni K; Gidarakos E
    Waste Manag; 2019 Mar; 87():51-61. PubMed ID: 31109551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial immobilisation and adaptation to Cu
    Maluleke MD; Kotsiopoulos A; Govender-Opitz E; Harrison STL
    Res Microbiol; 2024; 175(1-2):104148. PubMed ID: 37813270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of indium from LCD screens of discarded cell phones.
    Silveira AV; Fuchs MS; Pinheiro DK; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():334-42. PubMed ID: 25922168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indium recovery from spent liquid crystal displays by using hydrometallurgical methods and microwave pyrolysis.
    Huang YF; Wang SY; Lo SL
    Chemosphere; 2021 Oct; 280():130905. PubMed ID: 34162103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.