BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 38959822)

  • 1. The permeability evolution mechanism of ore-bearing strata during acid in-situ leaching of uranium: A case study of Bayanwula uranium mine in Inner Mongolia of China.
    He T; Liu J; Zhao B; Gong H; Feng Z; Liu S
    J Contam Hydrol; 2024 Jun; 265():104390. PubMed ID: 38959822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-scale pore size distribution features of uranium-bearing sandstone in the northwest of Xinjiang, China.
    Zeng S; Li H; Zhang N; Sun B; Li J; Liu Y
    R Soc Open Sci; 2021 May; 8(5):202036. PubMed ID: 34084542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive transport model of uranium by CO
    Zhang H; Zhang T; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(24):65976-65989. PubMed ID: 37093393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
    Saunders JA; Pivetz BE; Voorhies N; Wilkin RT
    J Environ Manage; 2016 Dec; 183():67-83. PubMed ID: 27576149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effects of hydrogen peroxide and phosphate on uranium(VI) immobilization: implications for the remediation of groundwater at decommissioned in situ leaching uranium mine.
    Li F; Huang X; Wang S; Zhang H; Ma J; Ding Y; Ding D
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117132-117142. PubMed ID: 37864694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on radon exhalation behavior of heap leaching uranium ore column with dilute sulfuric acid.
    Ye Y; Wang Z; Liang T; Ding D; Feng S; Zhong Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20308-20315. PubMed ID: 31093918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal kinetic characteristics of hard-rock uranium leaching with sulfuric acid.
    Zeng S; Li J; Tan K; Zhang S
    R Soc Open Sci; 2018 Sep; 5(9):180403. PubMed ID: 30839685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the closure-related geochemical evolution of groundwater at a former uranium mine.
    Bain JG; Mayer KU; Blowes DW; Frind EO; Molson JW; Kahnt R; Jenk U
    J Contam Hydrol; 2001 Nov; 52(1-4):109-35. PubMed ID: 11695738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process.
    Zhou L; Wang X; Zhuo Y; Hu K; Zhong W; Huang G
    R Soc Open Sci; 2019 Nov; 6(11):191107. PubMed ID: 31827847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Quantitative Prediction of the Groundwater Potential Area-A Case Study of a Simple Geological Structure Aquifer.
    Li L; Xia F; Liu J; Zang K; Liu C; Wei J; Liu L
    ACS Omega; 2022 May; 7(21):18004-18016. PubMed ID: 35664631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reactive transport model designed to predict the environmental footprint of an 'in-situ recovery' uranium exploitation.
    Escario S; Seigneur N; Collet A; Regnault O; de Boissezon H; Lagneau V; Descostes M
    J Contam Hydrol; 2023 Mar; 254():104106. PubMed ID: 36634485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater.
    Paradis CJ; Hoss KN; Meurer CE; Hatami JL; Dangelmayr MA; Tigar AD; Johnson RH
    J Contam Hydrol; 2022 Dec; 251():104076. PubMed ID: 36148719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microorganisms on in situ uranium mining.
    Yates MV; Brierley JA; Brierley CL; Follin S
    Appl Environ Microbiol; 1983 Oct; 46(4):779-84. PubMed ID: 16346395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur enhancement effects for uranium bioleaching in column reactors from a refractory uranium ore.
    Li Q; Yang Y; Ma J; Sun J; Li G; Zhang R; Cui Z; Li T; Liu X
    Front Microbiol; 2023; 14():1107649. PubMed ID: 36778865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of core-shell composite materials capable of slowly releasing phosphate and their remediation performance of uranium-contaminated groundwater.
    Sheng L; Zhang H; Ma J; Ding D
    Chemosphere; 2023 Dec; 344():140160. PubMed ID: 37716562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreduction of U(VI) in groundwater under anoxic conditions from a decommissioned in situ leaching uranium mine.
    Ding DX; Li SM; Hu N; Xu F; Li GY; Wang YD
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):661-9. PubMed ID: 25341364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of groundwater microbial communities and the correlation with the environmental factors in a decommissioned acid
    Zhu F; Zhao B; Min W; Li J
    Front Microbiol; 2022; 13():1078393. PubMed ID: 36909843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium.
    Lian G; An Y; Sun J; Yang B; Shen Z
    Sci Total Environ; 2024 Jul; ():174406. PubMed ID: 38964395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental measurements of the permeability characteristics of rare earth ore under the hydro-chemical coupling effect.
    Wang X; Zhuo Y; Zhao K; Zhong W
    RSC Adv; 2018 Mar; 8(21):11652-11660. PubMed ID: 35542770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling uranium and
    de Boissezon H; Levy L; Jakymiw C; Distinguin M; Guerin F; Descostes M
    J Contam Hydrol; 2020 Nov; 235():103711. PubMed ID: 32949982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.