These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38959871)
1. Electrospun PAN/PANI/CNT scaffolds and electrical pulses: a pathway to stem cell-derived nerve regeneration. Fakhraei Khosravieh Z; Nekounam H; Asgari F; Haghighipour N Biomed Phys Eng Express; 2024 Jul; 10(5):. PubMed ID: 38959871 [TBL] [Abstract][Full Text] [Related]
2. Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Wang M; Tremblay PL; Zhang T Bioelectrochemistry; 2021 Aug; 140():107750. PubMed ID: 33578301 [TBL] [Abstract][Full Text] [Related]
3. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Mahmoudifard M; Soleimani M; Hatamie S; Zamanlui S; Ranjbarvan P; Vossoughi M; Hosseinzadeh S Biomed Mater; 2016 Mar; 11(2):025006. PubMed ID: 26962722 [TBL] [Abstract][Full Text] [Related]
5. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
6. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Wang J; Tian L; Chen N; Ramakrishna S; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306 [TBL] [Abstract][Full Text] [Related]
7. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Esmaeili Abdar Z; Jafari R; Mohammadi P; Nadri S Int J Artif Organs; 2022 Aug; 45(8):695-703. PubMed ID: 35773946 [TBL] [Abstract][Full Text] [Related]
8. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. Prabhakaran MP; Ghasemi-Mobarakeh L; Jin G; Ramakrishna S J Biosci Bioeng; 2011 Nov; 112(5):501-7. PubMed ID: 21813321 [TBL] [Abstract][Full Text] [Related]
9. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
10. Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Soleimani M; Nadri S; Shabani I Int J Dev Biol; 2010; 54(8-9):1295-300. PubMed ID: 20857376 [TBL] [Abstract][Full Text] [Related]
11. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Li Y; Li X; Zhao R; Wang C; Qiu F; Sun B; Ji H; Qiu J; Wang C Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():106-112. PubMed ID: 28024565 [TBL] [Abstract][Full Text] [Related]
12. Silk nanofibrous electrospun scaffold enhances differentiation of embryonic stem like cells derived from testis in to mature neuron. Bojnordi MN; Ebrahimi-Barough S; Vojoudi E; Hamidabadi HG J Biomed Mater Res A; 2018 Oct; 106(10):2662-2669. PubMed ID: 29901281 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells. Eyni H; Ghorbani S; Shirazi R; Salari Asl L; P Beiranvand S; Soleimani M J Biomater Appl; 2017 Sep; 32(3):373-383. PubMed ID: 28752802 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of conductive polymer-based nanofiber scaffolds for tissue engineering applications. Gu BK; Kim MS; Kang CM; Kim JL; Park SJ; Kim CH J Nanosci Nanotechnol; 2014 Oct; 14(10):7621-6. PubMed ID: 25942837 [TBL] [Abstract][Full Text] [Related]
16. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335 [TBL] [Abstract][Full Text] [Related]
17. Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold. Fakhrieh M; Darvish M; Ardeshirylajimi A; Taheri M; Omrani MD J Cell Biochem; 2019 Sep; 120(9):15814-15822. PubMed ID: 31069835 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Ahmadi P; Nazeri N; Derakhshan MA; Ghanbari H Int J Biol Macromol; 2021 Jun; 180():590-598. PubMed ID: 33711373 [TBL] [Abstract][Full Text] [Related]
19. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Sirivisoot S; Harrison BS Int J Nanomedicine; 2011; 6():2483-97. PubMed ID: 22072883 [TBL] [Abstract][Full Text] [Related]
20. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Wu S; Qi Y; Shi W; Kuss M; Chen S; Duan B Acta Biomater; 2022 Feb; 139():91-104. PubMed ID: 33271357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]