These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38959904)

  • 1. Functional nanotransducer-mediated wireless neural modulation techniques.
    Li G; Li D; Lan B; Chen Y; Zhang W; Li B; Liu Y; Fan H; Lu H
    Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38959904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.
    Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S
    Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid upconversion nanomaterials for optogenetic neuronal control.
    Shah S; Liu JJ; Pasquale N; Lai J; McGowan H; Pang ZP; Lee KB
    Nanoscale; 2015 Oct; 7(40):16571-7. PubMed ID: 26415758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.
    Wu X; Yang F; Cai S; Pu K; Hong G
    ACS Nano; 2023 May; 17(9):7941-7952. PubMed ID: 37079455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light Conversion Nanomaterials for Wireless Phototherapy.
    Sun B; Teo JY; Wu J; Zhang Y
    Acc Chem Res; 2023 May; 56(10):1143-1155. PubMed ID: 36897248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Magnetism-Optogenetic" System for Wireless and Highly Sensitive Neuromodulation.
    Tian Y; Zhang Y; Zhang X; Pan H; Zhang L; Liu S; Chen Y; Su L; Zhao P; Chang J; Wang H
    Adv Healthc Mater; 2022 Feb; 11(3):e2102023. PubMed ID: 34812596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Upconversion Barcodes for Combinatory Wireless Neuromodulation in Behaving Animals.
    Lin X; Sun T; Tang M; Yang A; Yan-Do R; Chen D; Gao Y; Duan X; Kai JJ; Wang F; Shi P
    Adv Healthc Mater; 2022 Jul; 11(13):e2200304. PubMed ID: 35426262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotransducers for Wireless Neuromodulation.
    Li X; Xiong H; Rommelfanger N; Xu X; Youn J; Slesinger PA; Hong G; Qin Z
    Matter; 2021 May; 4(5):1484-1510. PubMed ID: 33997768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic nanomaterials-mediated neuromodulation.
    Lu X; Li G; Jiao W; Li K; Zhang T; Liu X; Fan H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(4):e1890. PubMed ID: 37089064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.
    Zheng B; Wang H; Pan H; Liang C; Ji W; Zhao L; Chen H; Gong X; Wu X; Chang J
    ACS Nano; 2017 Dec; 11(12):11898-11907. PubMed ID: 29064662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation.
    All AH; Zeng X; Teh DBL; Yi Z; Prasad A; Ishizuka T; Thakor N; Hiromu Y; Liu X
    Adv Mater; 2019 Oct; 31(41):e1803474. PubMed ID: 31432555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Neuromodulation in Inflammatory Pain.
    Liang Y; Zhou Y; Moneruzzaman M; Wang Y
    Neuroscience; 2024 Jan; 536():104-118. PubMed ID: 37977418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation.
    Yi Z; Luo Z; Qin X; Chen Q; Liu X
    Acc Chem Res; 2020 Nov; 53(11):2692-2704. PubMed ID: 33103883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared.
    Sun C; Fan Q; Xie R; Luo C; Hu B; Wang Q
    Neurosci Bull; 2024 Aug; 40(8):1173-1188. PubMed ID: 38372931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotransducers for Near-Infrared Photoregulation in Biomedicine.
    Li J; Duan H; Pu K
    Adv Mater; 2019 Aug; 31(33):e1901607. PubMed ID: 31199021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.