These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38960373)
1. In silico thermal control of spiral wave dynamics in excitable cardiac tissue. Majumder R Biophys Rep (N Y); 2024 Sep; 4(3):100170. PubMed ID: 38960373 [TBL] [Abstract][Full Text] [Related]
2. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue. Shajahan TK; Nayak AR; Pandit R PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753 [TBL] [Abstract][Full Text] [Related]
3. In silico optical modulation of spiral wave trajectories in cardiac tissue. Hussaini S; Majumder R; Krinski V; Luther S Pflugers Arch; 2023 Dec; 475(12):1453-1461. PubMed ID: 38095694 [TBL] [Abstract][Full Text] [Related]
4. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Nash MP; Panfilov AV Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759 [TBL] [Abstract][Full Text] [Related]
5. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. Rogers JM; McCulloch AD J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294 [TBL] [Abstract][Full Text] [Related]
6. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy. Kuklik P; Szumowski L; Sanders P; Zebrowski JJ Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951 [TBL] [Abstract][Full Text] [Related]
7. Synchronization-based reconstruction of electromechanical wave dynamics in elastic excitable media. Lebert J; Christoph J Chaos; 2019 Sep; 29(9):093117. PubMed ID: 31575136 [TBL] [Abstract][Full Text] [Related]
8. Extension of refractoriness in a model of cardiac defibrillation. Trayanova NA; Aguel F; Skouibine K Pac Symp Biocomput; 1999; ():240-51. PubMed ID: 10380201 [TBL] [Abstract][Full Text] [Related]
9. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue. Kuklik P; Sanders P; Szumowski L; Żebrowski JJ J Biol Phys; 2013 Jan; 39(1):67-80. PubMed ID: 23860834 [TBL] [Abstract][Full Text] [Related]
10. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Beaumont J; Davidenko N; Davidenko JM; Jalife J Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363 [TBL] [Abstract][Full Text] [Related]
11. Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics. Bartocci E; Singh R; von Stein FB; Amedome A; Caceres AJ; Castillo J; Closser E; Deards G; Goltsev A; Ines RS; Isbilir C; Marc JK; Moore D; Pardi D; Sadhu S; Sanchez S; Sharma P; Singh A; Rogers J; Wolinetz A; Grosso-Applewhite T; Zhao K; Filipski AB; Gilmour RF; Grosu R; Glimm J; Smolka SA; Cherry EM; Clarke EM; Griffeth N; Fenton FH Adv Physiol Educ; 2011 Dec; 35(4):427-37. PubMed ID: 22139782 [TBL] [Abstract][Full Text] [Related]
12. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Shajahan TK; Sinha S; Pandit R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206 [TBL] [Abstract][Full Text] [Related]
13. Analysis of electrically induced reentrant circuits in a sheet of myocardium. Larson C; Dragnev L; Trayanova N Ann Biomed Eng; 2003; 31(7):768-80. PubMed ID: 12971610 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study. Zimik S; Pandit R; Majumder R PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323 [TBL] [Abstract][Full Text] [Related]
15. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Ten Tusscher KH; Panfilov AV Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228 [TBL] [Abstract][Full Text] [Related]
16. [Effective control of excitable waves in 2D cardiac excitable media]. Li L; Liu L; Zhang G; Wang G; Qu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1104-7. PubMed ID: 16422076 [TBL] [Abstract][Full Text] [Related]
17. Properties of spiral waves in a piece of isotropic myocardium. Wohlfart B; Ohlén G Clin Physiol; 1999 Jan; 19(1):11-21. PubMed ID: 10068863 [TBL] [Abstract][Full Text] [Related]
18. New index for categorising cardiac reentrant wave: in silico evaluation. Shim EB; Hong SB; Lim KM; Leem CH; Youn CH; Pak HN; Earm YE; Noble D IET Syst Biol; 2011 Sep; 5(5):317-23. PubMed ID: 22010758 [TBL] [Abstract][Full Text] [Related]
19. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system. Weise LD; Panfilov AV PLoS One; 2011; 6(11):e27264. PubMed ID: 22114667 [TBL] [Abstract][Full Text] [Related]
20. Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media. Feldman AB; Chernyak YB; Cohen RJ Int J Bifurcat Chaos; 1998 Jun; 8(6):1153-61. PubMed ID: 11542661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]