These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 38960404)

  • 1. Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge.
    Chen H; Lu Y; Dai Z; Yang Y; Li Q; Rao Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable generative deep learning: an illustration with single cell gene expression data.
    Treppner M; Binder H; Hess M
    Hum Genet; 2022 Sep; 141(9):1481-1498. PubMed ID: 34988661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data.
    Gundogdu P; Loucera C; Alamo-Alvarez I; Dopazo J; Nepomuceno I
    BioData Min; 2022 Jan; 15(1):1. PubMed ID: 34980200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.
    Fortelny N; Bock C
    Genome Biol; 2020 Aug; 21(1):190. PubMed ID: 32746932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics.
    Seninge L; Anastopoulos I; Ding H; Stuart J
    Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data.
    Xiong G; LeRoy NJ; Bekiranov S; Sheffield NC; Zhang A
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physics-informed neural SDE network for learning cellular dynamics from time-series scRNA-seq data.
    Jiang Q; Wan L
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii120-ii127. PubMed ID: 39230705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependency-aware deep generative models for multitasking analysis of spatial omics data.
    Tian T; Zhang J; Lin X; Wei Z; Hakonarson H
    Nat Methods; 2024 Aug; 21(8):1501-1513. PubMed ID: 38783067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ctGAN: combined transformation of gene expression and survival data with generative adversarial network.
    Kim J; Seok J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks.
    Yu H; Welch JD
    Genome Biol; 2021 May; 22(1):158. PubMed ID: 34016135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.