These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38960404)

  • 1. Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge.
    Chen H; Lu Y; Dai Z; Yang Y; Li Q; Rao Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data.
    Xiong G; LeRoy NJ; Bekiranov S; Sheffield NC; Zhang A
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces.
    Ding J; Regev A
    Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.
    Fortelny N; Bock C
    Genome Biol; 2020 Aug; 21(1):190. PubMed ID: 32746932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics.
    Seninge L; Anastopoulos I; Ding H; Stuart J
    Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data.
    Guo ZH; Wu Y; Wang S; Zhang Q; Shi JM; Wang YB; Chen ZH
    BMC Bioinformatics; 2023 Dec; 24(1):481. PubMed ID: 38104057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.
    Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable generative deep learning: an illustration with single cell gene expression data.
    Treppner M; Binder H; Hess M
    Hum Genet; 2022 Sep; 141(9):1481-1498. PubMed ID: 34988661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data.
    Zhao Y; Cai H; Zhang Z; Tang J; Li Y
    Nat Commun; 2021 Sep; 12(1):5261. PubMed ID: 34489404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks.
    Wang X; Zhang C; Zhang Y; Meng X; Zhang Z; Shi X; Song T
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data.
    Gundogdu P; Loucera C; Alamo-Alvarez I; Dopazo J; Nepomuceno I
    BioData Min; 2022 Jan; 15(1):1. PubMed ID: 34980200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fusion Learning Model Based on Deep Learning for Single-Cell RNA Sequencing Data Clustering.
    Qiao TJ; Li F; Yuan SS; Dai LY; Wang J
    J Comput Biol; 2024 Jun; 31(6):576-588. PubMed ID: 38758925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.